
Math 245: Numerical Methods and Mathematical
Computing

Algorithms for naïve Gaussian elimination and the factorization,
using 0-based indexing and semi-open intervals
Brenton LeMesurier, Last Revised November 8, 2017

This notebook describes these core algorithms of linear algebra using the same indexing conventions as in most modern
programming languages: Python, C, Java, C++, javascript, C#, Objecive-C, Swift, etc. (In fact, almost everything except
Matlab and Fortran.)

The key elements of this are:

Indices for vectors and other arrays start at 0.
Ranges of indices are described with semi-open intervals in cases where the order does not matter.
This "index interval" notation has two virtues: it emphasizes the mathematical fact that the order in which things are
done is irrelevant (such as within sums), and it more closely resembles the way that most programming languages
specify index ranges. For example, the indices of a Python array with elements are , or , and the
Python notations range(n), range(0,n), :n and 0:n all describe this. Similarly, in Java, C C++ etc., one can
loop over the indices with for(i=a, i<b, i+=1)
When indices musr run in increasing order — i = a, then a+1, ... then b — I use

for i from a to b

When indices musr run in decreasing order — , then then — I use

for i from a to b This is the one place that the indexing is a bit tricky in Python:
The index values are , which in Python is range(b, a-1, -1).
Often though, the order does not matter

Notes on pseudo-code notation
I mark the end of for loops with a line end for, and likewise with if ... end if and so on. Python omits
these end markers, instead relying on indentation, but it can help with readability.
I use the equals sign only when the quantity at left has a unique, fixed value, so that it is a mathematically valid
equality.
If instead the quantity at left can vary during the computation, I indicate assignment with a left-arrow, as with

, because this is not the same as mathematical equality: is false!

Python code
I include Python code for comparison for just the three most basic algorithms: "naive" LU factorization and forward and
backward substitution, without pivoting. The rest are good exercises for learning how to program loops and sums.

A = LU

[a, b)

i n 0 ≤ i < n [0, n)

i ∈ [a, b)

i = b b − 1, … a

i b ≥ i > a − 1

i ← i + 1 i = i + 1

1 of 5 11/15/17, 5:22 PM

The naive Gaussian elimination algorithm

Version 1: Strict mathematical notation
In this careful version, the original matrix is called , and the new versions at each stage are called , , and so on
to , which is the row-reduced form also called ; likewise with the right-hand sides , up to .

for k in [0, n-1)

for i in [k+1, n)

for j in [k+1, n)

end for

end for

end for

Actually this skips formulas for some elements of the new matrix , because they are either zero or are unchanged from
: the rows before are unchanged, and for columns before , the new entries are zeros.

Version 2: Algorithmic notation, with variable quantities
In software all those super-scripts can be ignored, just updating the arrays A and b. However then quantities like have
variable values, so I use teh above-mentioned assignment notation " ".

for k in [0, n-1)

for i in [k+1, n)

for j in [k+1, n)

end for

end for

end for

The direct LU factorization with unit lower triangular
One advantage of this algorithm is that the notati is purely mathematical: there are no mutiple versions needing notation like
the above.

A A(0) A(1) A(2)

A(n−1) U = bb(0) b(1) = cb(n−1)

= /li,k a(k)
i,k a(k)

k,k

= −a(k+1)
i,j a(k)

i,j li,ka(k)
k,j

= −b(k+1)
i b(k)

i li,kb(k)
k

A(k+1)

A(k) i = k j = k

ai,k
←

= /li,k ai,k ak,k

← −ai,j ai,j li,kak,j

← −bi bi li,kbk

L

a(k)
i,k

2 of 5 11/15/17, 5:22 PM

The first row and column " " are special: they do fit the general pattern, but the sums are empty, so it is safer and a bit
clearer to handle them separately:

for j in [0, n)

end for

for i in [1, n)

end for

for k in [1, n)

for j in [k, n)

end for

for i in [k+1, n)

end for

end for

Python translation
Since module numpy is used so often, it is a widely-used convention to give it the nickname np.

In [1]: import numpy as np

Also, note:

the convenient function sum, which adds the elements of an array, and
the "slicing" notation with columns;
in general a:b denotes the semi-open interval , as in range(a,b).
Thus A[b:c, d:e] is the smaller array with elements A[i, j] for and .

k = 0

=u0,j a0,j

= /li,0 ai,0 u0,0

= −uk,j ak,j ∑
s∈[0,k)

lk,sus,j

= (−) /li,k ai,k ∑
s∈[0,k)

li,sus,k uk,k

[a, b)
i ∈ [b, c) j ∈ [d, e)

3 of 5 11/15/17, 5:22 PM

In [2]: def luFactorize(A):
'''

 Dolittle's method for direct calculation of an LU factorization LU of A,
 with L unit lower triangular and U upper triangular.
 Warning: nothing is done to detect or avoid division by zero!
 '''

n = len(A) # Function len counts the rows of A.
L = np.eye(n, n) # The identity matrix or "I"; my apologies for the pun.
U = np.zeros((n, n))
Do the first row and column [k=0] separately, as they involve no sums.
for j in range(0, n):

U[0, j] = A[0, j]
for i in range(1, n):

L[i, 0] = A[i, 0]/U[0, 0]
Now the general case.
for k in range(1, n):

for j in range(k, n):
U[k, j] = A[k, j] - sum(L[k, 0:k] * U[0:k, j])

for i in range(k+1, n):
L[i, k] = (A[i, k] - sum(L[i, 0:k] * U[0:k, k]))/U[k, k]

return (L, U)

Forward substitution with a unit lower triangular matrix
For unit lower triangular, solving by forward substitution is

for i in [1, n)

end for

In [3]: def solveUnitLowerTriangular(L, b):
n = len(b)
c = np.zeros(n)
c[0] = b[0]/L[0,0]
for i in range(1, n):

c[i] = b[i] - sum(L[i,0:i] * c[0:i])
return c

Backward substitution with an upper triangular matrix

for i from n-2 down to 0

end for

L Lc = b

= /c0 b0 l0,0

= −ci bi ∑
j∈[0,i)

li,jcj

= /xn−1 cn−1 un−1,n−1

=xi
−ci ∑j∈[i+1,n) ui,jxj

ui,i

4 of 5 11/15/17, 5:22 PM

Counting backwards in Python
For the Python implementation, we need a range of indices that change by a step of -1 instead of 1. This can be done with
an optional third argument to range: range(a, b, step) generates a succession values starting with a, each value
differing from its predecessor by step, and stopping just before b.
That last rule requires care when the step is negative: for example, range(3, 0, -1) gives the sequence . So to
count down to zero, one has to use ! That is, to count down from and end at 0, one uses

range(n-1, -1, -1)

In [4]: def solveUpperTriangular(U, c):
n = len(c)
x = np.zeros(n)
x[n-1] = c[n-1]/U[n-1,n-1]
for i in range(n-2, -1, -1):

x[i] = (c[i] - sum(U[i,i+1:n] * x[i+1:n]))/U[i,i]
return x

{3, 2, 1}
b = −1 n − 1

5 of 5 11/15/17, 5:22 PM

