
Chapter 1

Functions and Models
(some important pre-calculus topics)

This chapter is mostly a review of pre-calculus, in conjunction with part of the preview assign-
ments. In class we cover just the last two sections, on exponentials and logarithms, plus topics that
come up from questions on the preview assignment.
The exercises for this chapter start with four online WebAssign diagnostic assignments. These
correspond to the diagnostic tests near the front of the textbook, but submit your answers online
even if you work them all out on paper first; partly to learn how to use WebAssign before we start
on the graded assignments.
By the end of this Chapter, you should be able to answer all the Concept Check Questions and
True-False Quiz questions from the Chapter 1 Review on pages 68 and 69..

1.4 Exponential Functions

A function like f(x) = 2x is called exponential because the argument x is the exponent in the
formula. Exponential functions are the most basic and common transcendental functions, and are
probably the most important functions in mathematics and science after polynomials. So this is
the early encounter mentioned in the sub-title of the text.
We will see how exponential functions can be defined to have graphs that are continuous, unbroken
curves with well defined slopes, rather being only a collection of separate points for integer values
of x.

Non-negative integer powers of 2

With basic algebra, exponential functions are defined first for positive integer arguments, by for-
mula

2n = 2 · 2 · 2 · · · 2, the product of n factors 2.

Then to satisfy the rule 2n+m = 2n · 2m for the case m = 0 requires

20 = 1

so all non-negative integers n are covered.
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Negative integer powers of 2

For a negative integer n, |n| = �n is positive, and to satisfy the rule 2n · 2m = 2n+m we must have
2n.2�n = 2n+(�n) = 20 = 1, and so dividing by 2�n = 2|n|,

2n =
1

2�n
=

1

2|n|
for n a negative integer.

Rational powers of 2

Next we can make sense of exponentials for rational exponents. To get the exponential 2r for any
rational number r start with exponent 1/q, q a positive integer. To satisfy the rule (2a)b = 2ab

requires (21/q)q = 2q/q = 21 = 2, so taking the q-th root of both sides of this equation,

21/q = q
p
2 (the q-th root of 2) for q a positive integer.

Finally, any rational number can be written as r = p/q with p an integer, q a positive integer, and
the same rule requires

2p/q = ((2p)1/q) = q
p
2p.

Irrational powers of 2 (so all power of 2)

The graph of 2x for all rational x looks like a dense collection of dots along a curve which increases
to the right. Can we fill in the gaps at irrational values of x and get an smooth, uninterrupted
curve? For example, can we make sense of an irrational power like 2

p
3?

A number like
p
3 = 1.73205 . . . is approximated by a succession of decimal fractions 1, 1.7, 1.73,

1.732, 1.7320, 1.73205 and so on: it is the limit of this sequence of rational numbers. Raising 2 to
each of these powers gives the following new sequence of numbers (everything rounded to five
decimal places):

21 = 2 < 21.7 = 3.24900 < 21.73 = 3.31727 < 21.732 = 3.32188 < 21.73205 = 3.32200 . . .

All of these should be less that 2
p
3 since the values are increasing as the exponent increases andp

3 is greater than each of these exponents. On the other hand if we round up the decimal approx-
imations of

p
3, the exponentials should all be greater than 2

p
3:

22 = 4 > 21.8 = 3.48220 > 21.74 = 3.34035 > 21.733 = 3.32418 > 21.7321 = 3.32211 > 21.73206 = 3.32202 . . .

So it appears that
21.73205 = 3.32200 < 2

p
3 < 3.32202 = 21.73206,

so that 2
p
3 rounded to four decimal places is 3.3220.

We could continue with either sequence to compute a value for 2
p
3 to as many decimal places as

we wish.

In this way, we can make sense of, and compute, any power of 2, rational or irrational, so we have
made sense of the exponential function f(x) = 2x for all real arguments x.

Irrational powers of any positive number

There is nothing special about the base 2 used above except that it is positive: we could do the same
thing with any positive real number a, to compute the exponential function f(x) = ax. The graphs
for the different functions vary mostly in that they are increasing for a > 1, and increase faster for
larger values of a, and are decreasing for 0 < a < 1, decreasing faster for smaller values of a.
In the borderline case of a = 1, the graph is a constant: 1x = 1.
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Rules for exponential functions

The familiar rules for exponentials still hold just as with with rational exponents: for a and b
positive and any real numbers x and y,

• ax+y = ax · ay , and ax�y =
ax

ay

• (ax)y = ax·y

• (a · b)x = ax · bx

Note: from now on, marginal notes like that at right will indicated examples in the textbook to
study in conjunction with ideas just discussed in these notes. Examples 1 & 2

Applications of exponential functions

Read for yourself first textbook example os about population growth, which we will see that again
later.
Exercise A. The half-life of strontium-90, 90Sr, is 25 years. This means that half of any given quantity of Example 3
90Sr will disintegrate in 25 years.

a. If a sample of 90Sr initially has a mass of 24mg, find an expression for the mass m(t) that remains after
t years.

b. Find the mass remaining after 40 years, correct to the nearest milligram.

c. Use a graphing device to graph m(t) and use the graph to estimate the time required for the mass to be
reduced to 5 mg.

The number e

Of all possible choice of the base a of an exponential function ax, one is most convenient for math-
ematics because it makes the slope of the graph simplest: the number called e, with value approx-
imately e ⇡ 2.71828.
The graphs of all exponential functions pass through the point P (0, 1) on the y-axis, but the bigger
a is, the faster the function value grows as x increases, so the greater the slope is at this point. The
slope is zero for a = 1, when the function is constant, and increases as a increases. Experimenting
with a graphing calculator suggests that the slope is less than 1 for 2x, but greater than 1 for 3x.
So it seems that by increasing a to somewhere between 2 and 3, the slope will be 1 at P (0, 1), with
the slope greater than 1 for greater values of a, less than 1 for lesser values. That is, there is one
special value for the base that gives slope 1: this is the value called e.
We have already seen that e lies between 2 and 3, and with ever more careful computation of slopes
we could calculate the more accurate value given above.
We will soon see that any other exponential function can be written in terms of ex, and this is very
convenient in calculus, making this particular exponential function so important that it is often
called simply “the exponential function”. Examples 4 & 5

Study Exercises 1⇤, 3⇤, 9, 11⇤, 15, 18⇤, 17, 21⇤, 24⇤, 30⇤, 34⇤
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1.5 Inverse Functions and Logarithms

In part (c) of Example A of Section 1.5, we knew that the value of the function m(t) (mass of
Strontium-90 remaining) was 5 mg, and wanted to know the corresponding value of its argument
t (the time). More generally it would be useful to have a formula giving time t as a function of
mass m, t = g(m). A function like this that takes values “backwards” compared to the function is
the inverse of that function.
For example, with y = f(x) = x3, we get back from a y value to the corresponding x value by
treating y as known and solving y = x3 for the unknown x: this gives x = 3

p
y. Thus the cube root

function is the inverse of the cube function, and we write x = f�1(y) = 3
p
y. It is often convenient

to go back to using the name x for the argument of this new function too, writing f�1(x) = 3
p
x.

The horizontal line test and one-to-one functions

Graphically, one gets the graph of the inverse function x = f�1(y) by flipping the graph of y = f(x)
along the diagonal line y = x. Since the role of the x and y values are swapped, the domain of the
inverse is the range of the original function, and vice versa.
But this flipping does not always give the graph of a function. The graph of any function must
pass the vertical line test that no vertical line intersects it more than once, and for the flipped graph
to pass, the original graph must have no horizontal line intersects it more than once. This is the
horizontal line test, and is exactly what is needed for a function to have an inverse. Algebraically,
this means that no two different arguments x1 and x2 give the same value of the function:

Definition. Function f is one-to-one if for any x1 6= x2, f(x1) 6= f(x2).
Examples 1 & 2

The example f(x) = x3 is one-to -one and passes the HLT, since the function is increasing and so
passes through any horizontal line just once and never returns. In fact, any function that is always
increasing passes the HLT (same if it is always decreasing).
On the other hand f(x) = x2 fails the HLT: the horizontal line y = 1 intersects for both x = 1 and
x = �1. In fact every line y = a for positive a intersects at two x values,

p
a and �

p
a.

Inverse functions

One-to-one functions are exactly the ones that have inverses:

Definition. If function f is one-to-one, if has an inverse, denoted f�1, and defined by x = f�1(y) being
given by the solution x of the equation f(x) = y.

If a function is not one-to-one, this equation has several solutions for the same y-value, so does not
determine the value x so the inverse is not defined.
The domain of f�1 is the range of f [the “y-values” in the above equation], and the range of f�1

is the domain of f [the “x-values”].
But how do we reconcile f(x) = x2 not being one-to-one with it having an inverse, the square
root function? Be careful: we are talking about two different functions here, even though they
are described using the same formula y = x2! When we use the formula with domain all the real
numbers, it is not one-to-one, and has no inverse, but when we change the domain to non-negative
real numbers, that is a different function, with inverse

p
x.

The difference with this smaller domain is that the graph is only the right half of a parabola, which
is increasing and so satisfies the HLT. Algebraically, for any given value y, the equation x2 = y has
only one non-negative solution x. Example 3–5



INVERSE FUNCTIONS AND LOGARITHMS 1.5

Notation warning: inverses are not reciprocals!

Beware of a possible confusion:
y = f�1(x) [the inverse of function f applied to x] is not the same as

y = [f(x)]�1 =
1

f(x)
[the reciprocal of f(x)].

Logarithmic functions

Does an exponential function y = f(x) = ax have an inverse?
For a > 1, the value of ax increases as x increases: the graph is increasing, which is enough to pass
the HLT and ensure existence of an inverse. For 0 < a < 1, the graph is decreasing and so again
passes the HLT, giving an inverse. (For a = 1, there is no inverse.)
This inverse should be familiar: the number x for which ax = y is called the logarithm of y base a,
written loga y, so the inverse of the exponential function f(x) = ax is the logarithmic function base
a, f�1(x) = loga x. An exponential function for a 6= 1 is defined for all real numbers (its domain)
and its values (range) are all positive numbers. Thus the logarithmic functions loga have domain
all the positive numbers, range all the reals: only positive numbers have logarithms.
Note: this simple domain and range for logarithms depends on exponential functions now being
defined for all real arguments, not just all rational arguments.

Rules for logarithms

Logarithms satisfy the following rules, all following from the rules for exponentials in Section 1.5.
For any positive number a except 1, and any positive numbers x and y,

• loga(x · y) = loga x+ loga y

• loga(x/y) = loga x� loga y

• loga(x
p) = p loga x for any real power p.

Example 6

Natural logarithms

Since ex is the most commonly used exponential function, its inverse loge is the most important
logarithmic function. It is called the natural logarithm, and has the special name ln (from the initials
of “logarithm” and “natural”):

lnx = loge x.

Examples 7–9
Our first use of the natural logarithm is to put any exponential function ax in terms of ex. Using
the properties of exponentials and the fact that eln a = a,

ax = (eln a)x = e(ln a)x.

It can also be shown that
loga x =

lnx

ln a
,

so we can also put all logarithmic functions in terms of natural logarithms. Thus we mostly need
just one exponential function, ex, and just one logarithmic one: its inverse, the natural logarithm.

Example 10
Example 11Study Exercises 3, 4⇤, 6⇤, 10⇤, 13, 17, 18⇤, 19, 22⇤, 25. We omit the final topic, INVERSE TRIGONO-

METRIC FUNCTIONS, for now; instead we will review it when we encounter these functions in
Section 3.5.


