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Now that we have seen all the core Python features needed to implement mathematical algorithms, we start
on some more substantial computations: numerical approximation of definite integrals.

We will learn two new Python features: the command to sum a list of values, and organizing collections of
functions and such into modules, for convenient reuse elsewhere.

General Notes
Use a (multi-line) ’’’triple-quoted''' comment atop each file to provide documentation, including at
least your name and the date. This makes help(module_name) work after import module_name.
Also use a triple-quoted documentation quote at the top of each function definition in a module.
This makes help(module_name.function_name) work after import module_name, and
help(function_name) after from module_name import function_name.
In most other places, normal single-line “#” comments are fine.
When I specify the file names to use, use exactly those names!
Modules should in general only define functions and such, leaving the use of those functions to
other files (or notebook) which import them from the module.
The main exception is adding testing or demonstrations to a module file: put these (indented) inside
an if block at the bottom of the module file, started with:

if __name__ == "__main__":

(Each if those four long dashes is a pair of underscores!)

Whenever possible, check your Python files with me before submitting them to OAKS; in particular,
check that they run successfully and that the output at least appears to be correct.
Tip: Separate evaluation (with formulas and function calls) from output (with print statements and
such): compute values and store them into variables, and then print the values of those variables.
While developing and in interactive work like notebooks, it can be convenient to access all the
needed stuff from numpy with the wild import

from numpy import *
If basic matplotlib stuff is also needed to produce graphs, one can also use

from matplotlib.pyplot import *
An alternative that only works within notebooks and when working with the IPython interactive
command window is the IPython magic command



%pylab

which essentially does

from numpy import *

from matplotlib.pyplot import *

plus a few other things.

When using matplotlib graphics in a notebook, also use either

%matplotlib inline

or

%matplotlib tk

according to where you want the graphs to appear.

However, in Python files and modules, it is not possible to use magic commands like %pylab, and
it is best to import items needed explicitly with one of the following patterns, illustrated here by
plotting the graph of .

A)

import numpy
import matplotlib.pyplot

x = numpy.linspace(-numpy.pi, numpy.pi)
y = numpy.sin(x)
matplotlib.pyplot.plot(x, y)

B) Save some typing later by using the standard nicknames for these modules:

import numpy as np
import matplotlib.pyplot as plt

x = np.linspace(-np.pi, np.pi)
y = np.sin(x)
plt.plot(x, y)

C) Save even more typing later by explicitly importing the items needed:

y = sin(x)



from numpy import linspace, pi, sin
from matplotlib.pyplot import plot

x = linspace(-pi, pi)
y = sin(x)
plot(x, y)

In [1]:

# No graphs needed today, so:
from numpy import *

Objectives
We will learn several ways to perform summations, applying this to several methods for numerically
approximating definite integrals as seen in calculus courses: the composite trapezoid and midpoint rules. As
a bonus, we will then see an easy way of greatly improving the accuracy of the results.



Exercise 6.1: the (composite) trapezoid rule
To approximate the definite integral

the composite trapezoid rule with n equal intervals is

with

Create a module integration.py and within this a function with signature

trapezoid1(f, a, b, n)

which uses a loop to do the necessary summations, and returns . That is, its usage form is

T_n = trapezoid1(f, a, b, n)

Then read up on the Python function sum, and create a new version trapezoid2 using that instead of a
loop. Put it in the same module integration.

Test from a file unit6_exercise1.py, using initially the example of

This has the exact value 2/3, so also compute and display the error in each of your approximations.

Exercise 6.2: the (composite) midpoint rule
Mimic the above for the composite midpoint rule (the natural best Riemann sum).

Just do one version, using the second "sum" method above, and again put the definition

def midpoint(f, a, b, n): ...

in module integration.
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Exercise 6.3: more thorough testing
Choose a second example that is not a polynomial (so that the result is unlikely to be exact) and not zero at
either endpoint (so that coding errors at the endpoints are not hidden), but for which you know the exact
value of the integral.

Then output the error in each approximation to the integral, along with the approximation and the
corresponding value of n.

Test with  and maybe more, to check against the expectation that errors are proportional
to .

Finally, choose third example for which the exact value of the definite integral cannot be got using anti-
derivative an the Fundamental Theorem of Calculus. Again use the values , and so on, and try
to estimate the accuracy of your approximations by comparing the results for different values of .

Exercise 6.4: nicely formatted output
Once your code is doing the math correctly, produce a final testing file unit6_exercise4.py which presents
the results nicely:

Titles saying which method is being tested, and on which integral.
Values for n, ,  and (when known) the error, lined up in columns.

The last feature requires methods for formatting strings and output, which can be done several ways in
Python. For now, just one example:

In [2]:

# Three arbitrary values, just for printing:
x = 237/11.
n = 99
err = 0.000000236572
print('In test %4i, the solution is %-12.5f with estimated error %9.2e' % (n, x, 
err))
# Three more arbitrary values:
x = x**3
n += 1
err = err/7.
print('In test %4i, the solution is %-12.5f with estimated error %9.2e' % (n, x, 
err))

In test   99, the solution is 21.54545     with estimated error  2.3
7e-07
In test  100, the solution is 10001.54245  with estimated error  3.3
8e-08

n = 10, 100, 1000
1/n2

n = 10, 100
n
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The chunks starting with "%" and ending with a letter specify that a value from the tuple at right after the
final "%" gets inserted, with certain formating:

%i (or %d) is for integers
%f is for floating point numbers in fixed point format (no exponent)
%e is floating point numbers in scientific notation (with exponent)
%g chooses between "e" and "f" format, according to which is more compact

What do the numbers in between mean? What does a minus sign after the "%" and in front of a number
mean?

To answer that, experiment, or read all the details online in Section 4.7.2, printf-style String Formatting
(https://docs.python.org/3.4/library/stdtypes.html#printf-style-string-formatting) of the Python 3.4 Standard
library manual (https://docs.python.org/3.4/library/).

Exercise 6.5: improved accuracy (Simpson's rule)
Check out

Create a function for this, using the above-defined functions for the trapezoid and midpoint rules, and do the
coding, testing, and output in the modular style developed above. (As always, try to provide at least
estimates of errors, and actual error values where those are available.)

This is our first example of using a function that we have defined from within another function, and it
illustrates why we generally want functions that calculate values to return those values through output
variables without any printing from within the function, or at least with the option of not printing.

=S2n
+ 2 ∗Tn Mn

3

https://docs.python.org/3.4/library/stdtypes.html#printf-style-string-formatting
https://docs.python.org/3.4/library/

