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1 Introduction

The main objective of this talk is to describe a method for constructing time discretization methods for
Hamiltonian systems that

• conserve the Hamiltonian (“energy”) and all quadratic and linear conserved quantities, related to affine
symmetries,

• respect time reversal symmetry of the equations,

• are unconditionally stable (A-stable for the case of linear systems), and

• are of any chosen (even) order of accuracy.

This is then applied to several “lattice” equations that arise in modeling large molecules and optical waveg-
uide arrays. The method is also applicable to numerous other lattice equations including spatial discretiza-
tions of various dispersive nonlinear PDE’s, in particular ones of a general nonlinear Schrödinger type.

Some Notation for Derivatives
Vectors are indicated by bold face, as with y and f .

We will use the notations Dyf and
∂f

∂y
flexibly, to indicate either individual partial derivatives

Dkf = Dykf =
∂f

∂yk
,

gradient vectors

Dyf = ∇f = ∇yf =
∂f

∂y
=

〈
∂f

∂y1

∂f

∂y2
· · ·
〉
,

or Jacobian matrices

Dyf =
∂f

∂y
=

{
∂fi
∂yj

}
.

2 Some Equations of Interest

2.1 FPU and DNLS

Probably the two most famous example of lattice differential equations are the FPU equation, modeling
coupled nonlinear oscillations

m0
d2qn
dt2

= V ′(qn+1 − qn)− V ′(qn − qn−1) (1)

and the Discrete Nonlinear Schrödinger Equation [DNLS]

i
dun
dt

+K(un−1 + un+1) + 2|un|2un = 0. (2)

These are associated respectively with classical mechanical particle systems and with reductions of field
equations (including but certainly not limited to the Schrödinger equation) in the presence periodic spatial
structures.
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Figure 1: α-helix protein (poly-alanine) stick model. (Source: wikipedia)

2.2 The Davydov System, and Some Reductions

Davydov’s Model of Excitation Propagation in Protein
A less familiar equation, combining aspects of the above pair, is Davydov’s model of excitation propagation
in α-helix protein [Davydov 1971, Davydov&Kislukha 1973]

i
dun
dt

+K(un−3 + un+3)− L(un−1 + un+1) = (qn+3 − qn−3)un,

m0
d2qn
dt2
− (qn−3 − 2qn + qn+3) = |un+3|2 − |un−3|2

with three physical time scales

K ≈ 1.4 THz, L ≈ 2.3 THz, ω0 =
√

1/m0 ≈ 12 THz.

This serves as an example of a larger class of so called exciton-oscillator systems, and introduces additional
challenges to the design of a good numerical methods.

The Variables in Davydov’s Model

• The exciton variable un comes from Schrödinger’s equation, and gives the probability that the C=O
double bond at the n-th amino acid residue is in a stretching excited state. (This can be reached with
the energy quantum of the ATP-ADP interaction, and is the only quantum mechanical excitation that
is likely at biologically relevant temperatures.)

http://en.wikipedia.org/wiki/File:Alpha_helix_neg60_neg45_sideview.png
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• The mechanical variable qn indicates the displacement of the n-th residue from its rest position, in the
direction of the axis of the helix.

• The K terms relate to the attractive interaction between excitons in residues that are adjacent along
an almost straight spine of residues within a helical molecular structure:
there are approximately three residues per twist of the helix.

• The L terms relate to the repulsive interaction between excitons in residues that are adjacent along the
molecular backbone of residues within a helical molecular structure.

• The remaining “mechanical” terms relate to the attractive electrostatic dipole interaction between
resides adjacent along spines.

Hamiltonian Form for the Davydov System
The Davydov System has a Hamiltonian form, with

H = = −K
∑
n

(unu
∗
n+3 + un+3u

∗
n) + L

∑
n

(unu
∗
n+1 + un+1u

∗
n)

+
∑
n

[
p2n

2m0
+

1

2
(qn+3 − qn)2

]
+
∑
n

(qn+3 − qn−3)unu∗n.

(3)

Due to the mix of real and complex variables, the Hamiltonian equations are also most conveniently given
as a mix of two types as described next.

Canonical Real Hamiltonian Form
For the real “particle” variables qn and conjugate momenta pn = m0qn, the equations take the familiar form

dqn
dt

=
∂H
∂pn

,
dpn
dt

= − ∂H
∂qn

, (4)

or
dq

dt
= ∇pH,

dp

dt
= −∇qH. (5)

Canonical Complex Hamiltonian Form
For the complex “field” variables un, it is instead convenient to use the complex form

dun
dt

=
∂H
∂u∗n

,
du∗n
dt

= − ∂H
∂un

, (6)

or
du

dt
= i∇u∗H, du∗

dt
= −i∇uH. (7)

However the complex form could be eliminated with the change of variables

q =
u + u∗√

2
, p =

u− u∗

i
√

2
. (8)

Note that u and u∗ are formally independent variables, though in practice they are complex conjugates, the
Hamiltonian is real in that case, and so only the first equation in (7) is needed.
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General Hamiltonian Form
It is thus convenient to phrase everything in terms of a slightly more general Hamiltonian form

dy

dt
= J∇yH(y) = J ∂H

∂y
(y) (9)

with J an anti-symmetric matrix.

In the cases of interest here, J is a constant matrix, but it can also be a matrix-valued function of the state
variables, J (y).

Boundary Conditions
Various conditions can be imposed on the Hamiltonian to deal with out-of-bounds indices that arise.

Defining the bond-stretchings ∆n := qn+3 − qn,

• Homogeneous Dirichlet end conditions are most natural physically:

un = 0, ∆n := qn+3 − qn = 0

for “out of bounds” values of the index n.

• Periodic end conditions are convenient for testing performance in long-time calculations:

un+N = un, ∆n+N = ∆n.

For constructing PDE approximations via continuum limits, it is also convenient to consider an infinite
chain with n ∈ N and

un → 0, ∆n → 0 as |n| → ∞.

The Small-and-Fast Oscillation Limit: HDNLS
Many phenomena of interest on the Davydov system are retained in the approximation that the greater
stiffness of the mechanical couplings causes the exciton quantities un to interact primarily with their time
average, given by the singular limit m0 → 0.

This gives what I will call

The Helical Discrete Schrödinger Equation [HDNLS]

i
dun
dt

+K(un+3 + un−3)− L(un+1 + un−1)

+

(
|un|2 +

1

2

(
|un−3|2 + |un+3|2

))
un = 0.

(10)

Hamiltonian for HDNLS
The HDNLS has canonical complex Hamiltonian form with

H =−K
∑
n

(u∗nun+3 + unu
∗
n+3) + L

∑
n

(unu
∗
n+1 + un+1u

∗
n)

+
1

2

∑
n

(u∗nun)
(
u∗nun + u∗n+1un+1

)
.

(11)
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Some Features of HDNLS
Two distinguishing features relative to the standard Discrete Nonlinear Schrödinger [DNLS] equation

i
dun
dt

+K(un+1 + un−1) + 2|un|2un = 0 (12)

are the non-local form of the nonlinearity, and the addition of non-nearest neighbor interactions, adding
some conformational information about the molecular chain.

A Discrete Nonlinear Schrödinger Equation with a Non-local Nonlinearity
A further simplification for testing purposes is the single spine version of the above,

The Non-Local Discrete Nonlinear Schrödinger Equation [NLDNLS]

i
dun
dt

+K(un+1 + un−1)

+

[
|un|2 +

1

2

(
|un−1|2 + |un+1|2

)]
un = 0.

(13)

with Hamiltonian

H = −K
∑
n

(u∗nun+1 + unu
∗
n+1) +

1

2

∑
n

(u∗nun)(u∗nun + u∗n+1un+1). (14)

These exciton-oscillator chain models are interesting challenges for developing and testing numerical meth-
ods:

• They cannot be handled by some earlier approaches developed for discretizations of PDEs such as the
methods of [LaBudde&Greenspan 1976] or [Strauss&Vázquez 1978], due to the non-local coupling
in the nonlinear term, and

• They cannot be handled well by some other popular methods for Lagrangian and mechanical systems,
such as the Störmer-Verlet method (which is leap-frog for the case of mechanical systems in standard
form).

Non-Mechanical Form
Note that for all the equations with complex field components, the Hamiltonian

1. is not in the standard form for a mechanical system, and indeed

2. does not separate asH = T (p) + U(q).

Many popular conservative and symplectic numerical methods that work well for mechanical systems,
such as molecular models with no quantum excitations present, rely on the latter splitting.
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2.3 Invariants (a.k.a Conserved Quantities, First Integrals)

Conserved “Charge”
The field equations have a conserved charge E (also called exciton number or power depending on the
physical application). This is related to the probability density of quantum mechanics, and notably, it is
quadratic :

E =
∑
n

unu
∗
n. (15)

This is associated via Noether’s Theorem with a linear symmetry group action, the gauge symmetry

u→ eisu, u∗ → e−isu∗. (16)

Conserved Momentum for the Davydov System
The Davydov systems also has a conserved momentum P , again (degenerately) quadratic:

P =
∑
n

pn. (17)

This is associated via Noether’s Theorem with the symmetry group action qn → qn + s.

Conservation of Energy in Hamiltonian Systems
For future reference, here are the verifications of the invariance of the conservation of these invariants.

First, for any system dy/dt = J∇yH(y)

dH
dt

= ∇yH ·
dy

dt
multivariable chain rule

= ∇yH(y) · J∇yH(y) Hamilton’s equations

= 0 from the anti-symmetry of J .

Phase Shift Invariance and its Invariant Quadratic Forms
Conservation of the charge can be verified directly (rather than invoking Noether’s Theorem) by first noting
that the state variables un and u∗n appear in the Hamiltonian only through the symmetry group invariant
quadratic combinations

πnm = unu
∗
m

which are invariant under the gauge symmetry

u→ eisu, u∗ → e−isu∗.
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Invariance of Charge
To verify invariance of the charge in time, first differentiate:

dE
dt

=
∑
n

d(unu
∗
n)

dt

=
∑
n

dun
dt

u∗n +
du∗n
dt

un

= i
∑
n

∂H
∂u∗n

u∗n −
∂H
∂un

un

= i
∑
n

[∑
m

∂H
∂πmn

∂πm,n
∂u∗n

u∗n −
∑
m

∂H
∂πnm

∂πnm
∂un

un

]
= i
∑
n

∑
m

[ ∂H
∂πmn

umu
∗
n −

∂H
∂πnm

u∗num

]
.

Then note that for any pair of indices a, b with a ≤ b

• the term
∂H
∂πnm

unu
∗
m for m = a, n = b is

∂H
∂πba

ubu
∗
a, and

• the term − ∂H
∂πmn

u∗num for m = b, n = a is − ∂H
∂πba

u∗aub.

Thus all terms pair off and cancel, giving
dE
dt

= 0.

2.4 More General Lattice Equations

The nonlocal nonlinearity of NLDNLS arises from a “fast mechanical oscillation, slow field excitation”
approximation. Similar approximations arise in PDE models, such as with coupling of field propagation
to fast acoustic waves in the propagation medium, and lead to the coupling of time evolution equations
with time-independent (elliptic) equations. Then solving the time-independent equations to eliminate the
fast (mechanical) variables in terms of the slower (field) variables again leads to nonlocal coupling in the
nonlinear interaction.

Spatial discretization of such equations, or approximations describing periodic lattice structures, lead to
interest in a general class of equations given by Hamiltonians

H =
∑
n

∑
m

(lnmunu
∗
m) +G(uu∗)

for symmetric matrix L = {lnm}. Here uu∗ denotes the matrix of all products unu∗m.

The ODEs are then a general family of

Lattice Nonlinear Schrödinger Equations

i
dun
dt

+
∑
m

lnmum +
∑
m

gnm(u,u∗)um = 0. (18)
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2.5 Features of The Lattice ODE Systems

The systems of ODE’s arising from such discretizations of PDEs typically have the following features:

1. A very large number of unknowns, N .

2. A property analogous to quasi-linearity, like the form

dy

dt
= f(y) = Ly + g(y)

where L is a constant matrix and the nonlinear term g(y) is small in that the Jacobian matrix Dyg(y)
has far smaller norm than L for relevant values of y.

3. The coupling between unknowns is local, or dominantly local, where

• local means that theN×N Jacobian matrixA = Dyf(y) is banded: the only non-zero elements
Aij are ones with |i− j| ≤ w for some bandwidth w � N .
(Or cyclically banded in the case of periodic boundary conditions.)

• dominantly local means that the system is quasi-linear as above and the linear part L is banded.

3 Time Discretization Methods That Conserve Energy and “Momenta”, and
Respect Time Reversal Symmetry

Definition 1 (Symmetric Time-Stepping Method). A time stepping method is symmetric if the time-stepping
map of step size −h is the inverse of the map for step size h.

For example, the implicit midpoint method is symmetric — but no explicit one-step method is.

From now on, we will require that all methods are symmetric, because this is empirically seen to have
desirable effects on the long-term behavior of numerical solutions, and is also convenient when constructing
methods of higher order accuracy.

Methods That Conserve Energy and “Momenta”
An elegant approach to deriving methods that exactly conserve energy (the Hamiltonian) is to approximate
the gradients appearing in the Hamiltonian equation

dy

dt
= J∇yH.

This can be done easily, and in many ways, but

• conserving other invariants (often called momenta) requires an appropriate choice of the gradient
approximation, and

• there is a natural limitation to quadratic (including linear) momenta.
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Some Notation for Difference Schemes
We will focus on the time advance map for single time step, from a time t to t+ h.

Thus for a scalar variable x, a vector x, and likewise for other variables like q, p, and u:

• h = δt denotes the change in t over the time step.

• x alone without arguments denotes the value x(t) at time t,
typically the beginning of the current time step.

• t+ = t+ h and x+ denotes the value x(t+) = x(t+ h).

• δx = x+ − x.

• X = x =
x+ x+

2
.

• Ẋ =
δx

δt
.

Note that capital letters are only used for time averaged or time-step approximated quantities.

3.1 Discrete Gradient Methods

The basic idea, originating in the work of [Gonzales 1996, Gonzales&Simo 1996] is to define a discrete
approximation of the gradient

∇yf(y) ≈ (∇̃yf)(y,y+) =
〈

(D̃1f)(y,y+), (D̃2f)(y,y+), . . .
〉
, (19)

giving the discrete Hamilton’s equation

δy

δt
= J (∇̃yH)(y,y+). (20)

In the case of a variable matrix J (y), one instead uses an approximation J̃ (y,y+): the natural choice is
the midpoint approximation

J̃ (y,y+) = J (y).

The approach presented here follows [LeM 2012a, LeM 2012b].

From now on we will assume the natural consistency condition

lim
y+→y

(∇̃yf)(y,y+) = ∇yf(y).

A discrete gradient cannot simply be constructed from independently defined discrete approximations of the
partial derivatives, because an important relation must be imposed on the components: all discrete gradients
are required to satisfy the

Discrete (Multivariable) Chain Rule
δf = (∇̃yf)(y,y+) · δy, =

∑
n

(D̃nf)(y,y+)δyn. (21)

A suitable discrete Jacobian (D̃yf)(y,y
+) for a vector-valued function f is then given by combining discrete

gradients of each component function of f .
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Conservation of Energy With DIscrete Gradient Methods
Conservation of energy is easily shown, by mimicking the argument used above for a (continuous time)
Hamiltonian system:

δH
δt

= (∇̃yH)(y,y+) · δy
δt

= (∇̃yH)(y,y+) · J (∇̃yH)(y,y+)

= 0.

Choosing a Discrete Gradient
Unfortunately, there are infinitely many choices of discrete gradient satisfying this chain rule condition:
generically, if you choose all but one component, then the above discrete chain rule determines the value of
that last component.

The challenge is to choose a discrete gradient that gives
conservation of invariants.

The new strategy here is to choose a discrete gradient that allows verification of conservation by
mimicking the calculations that work for differential equations,
as was just done for conservation of energy.

Choosing a Discrete Gradient: Respecting Quadratic Invariants
There seems to be no universal way to do this, with the problem in particular being that
associativity of products cannot be respected,
so that triple products cannot be handled in a canonical way.

On the other hand, there is a canonical approach if one factors multiple products in terms of suitable
quadratic and linear terms, and this leads again to the result that
quadratic and linear invariants can be handled, but not in general invariants of other forms.
Fortunately, this is enough for a wide range of systems arising from physical problems.

Difference Calculus for Functions of One Variable
For functions f(x) of a single variable, the discrete multivariable chain rule dictates a simple and familiar
difference scheme:

D̃xf(x, x+) :=


δf

δx
, x+ 6= x

df

dx
(x), x+ = x.

(22)

That is, the standard centered difference approximation, with the exact derivative used when needed.

This approximation is at best second order accurate, and leads to the basic discrete gradient method being
second order accurate, as for the implicit midpoint method. However, symmetric step composition methods
can be used to construct higher order methods, as will be discussed soon.
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Avoiding Division By Zero (optional!)
A greater problem is that this will be used with x+ unknown, so it is unknown which of the two forms
above applies. Thus it is highly desirable (but not quite essential) to simplify the first form so as to
eliminate division by δx, to get a universally valid formula.

To start with, this is possible for natural number powers with

D̃x(xr)(x, x+) =
δ(xr)

δx
= (x)r−1 + (x)r−2(x+) + · · ·+ (x+)r−1.

Linear Combinations, Compositions, and Inverses
Sums and constant factors are naturally handled by linearity, and there is a canonical choice for a discrete
chain rule for compositions (f ◦ g)(x) with f a function of one variable:

∇̃y(f ◦ g)(x,x+) = D̃gf(g, g+)∇̃xg(x,x+). (23)

From this, the inverse of a function of one variable, y = f (−1)(x), is handled as:

D̃xy = D̃x

(
f (−1)

)
(x, x+) =

1

(D̃yf)(y, y+)
.

Combined with the above result for f(x) = xr and linearity, all elementary rational functions of one
variable can be handled with a single formula, without the special “division by zero” case.

Next, we adopt a product rule based on the decomposition δ(fg) = gδf + fδg.

That is, for a product f(x)g(x), we adopt the

Time-Symmetric Discrete Product Rule
(∇̃x(fg))(x,x+) = g(∇̃xf)(x,x+) + f(∇̃xg)(x,x+). (24)

This is the only choice that has time-reversal symmetry and respects commutativity of products, and it also
has the advantage of giving second order accuracy.

For Linear Systems, this is the Implicit Midpoint Rule, and so is Unconditionally Stable
For linear systems, the Hamiltonian is quadratic and so the above choices lead to the implicit midpoint
method. Thus, any choice of discrete gradient method following these rules will have the unconditional
A-stability of the midpoint method.

Non-Associativity of the Product Rule
For products of more than two factors, it is impossible to construct a generally applicable rule.

If one applies the rule above to product uvw via the various factorizations u(vw), (uv)w, v(uw) etc., one
gets different results, with different consequences for conservation of invariants.

Also, symmetrizations such as averaging over all alternatives do not necessarily give a form that respects
the symmetries and conservation laws of the Hamiltonian.
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This is a Calculus for Formulas, not Functions
Instead, the approach here is limited to handling conservation laws whose verification only depends on the
handling of terms involving at most products of two variables — in particular, the invariant quadratic (or
linear) combinations of state variables noted above.

This means that:
the difference calculus defined here applies to formulas,
with the order of evaluation of all operations specified.

When does this work?

Theorem 2. If a Hamiltonian system (9)

(a) has a collection of conserved quadratic invariants (depending only on state variables), and

(b) the associated symmetry group of the Hamiltonian consists of affine transformations of the variables,
and

(c) the Hamiltonian is “manifestly invariant” in that it can be expressed entirely in terms of quadratic
combinations ŷa(y) of the original variables that are invariant under this symmetry group

H(y) = Ĥ(ŷ(y)) (25)

then we get a time discretization that conserves these invariants by using the discrete gradient given by
applying the discrete chain rule (23) to formula (25).

A Conservative Discrete Gradient Scheme
The resulting time-stepping method is

y+ − y

h
= J (∇̃ŷĤ)(ŷ, ŷ+) · (D̃yŷ)(y,y+). (26)

Note:

• The choice of the discrete gradient (∇̃ŷĤ)(ŷ, ŷ+) in the first factor does not matter.

• The second factor (D̃yŷ)(y,y+) is determined by the discrete product rule and linearity,
through terms like

D̃ya(yayb) = ȳb (a 6= b), D̃ya((ya)
2) = 2ȳa.

Thus the formula for (D̃yŷ)(y,y+) comes from the formula for the exact Jacobian D̃yŷ(y) through
the substitution y→ y.

Proof Idea
The main idea in the proof of this result is that for any conserved quantity Q(y) of the ODE system that is
quadratic in the state variables yj ,

dQ

dt
= DyQ(y) · JDŷĤ ·Dyŷ = 0 (27)

and this fact does not depend on the details of the function Ĥ.
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Why? Because any choice of Ĥ gives a Hamiltonian H(y) with the required symmetry properties and thus
makes Q a conserved quantity, so that the above equation is true. The result depends only on the terms
DyQ(y) and Dyŷ, which are linear in the yj .

With δQ/δt for the discrete gradient scheme, the only change in these linear gradient terms is the substitution
yj → yj , which is merely a “renaming”, and does not affect the validity of the identity:

δQ

δt
= 0,

so Q(y) is conserved by the time-discrete system.

3.2 Practical Implementation: an Iterative Solution Method

A Linearly Implicit Iterative Scheme for Solving Discrete Gradient Systems
The system of equations will be nonlinear (unless the Hamiltonian system itself is linear),
so we need an iterative solution method.

The following method preserves the linear stability properties and exact momentum conservation:

• Set y(0) = y (or some other suitable approximation of y+).

• Construct successive approximations y(k) of y+ by solving

y(k+1) − y = hJ (∇̃ŷĤ)(ŷ, ŷ(k)) · (D̃yŷ)(y,y(k+1)). (28)

That is, the nonlinear part ∇̃ŷĤ is approximated using the current best available approximation y(k) of y+,
while the linear terms are left in terms of the unknown y(k+1) to be solved for.

Exact Conservation of Quadratic Invariants at Each Iteration
This equation is linear in the unknown y(k+1), making its solution straightforward, and much as above, we
have:

Theorem 3. Each iterate y(k) given by the above iterative scheme conserves all quadratic first integrals
that are conserved by the original discrete gradient scheme (26).

The key is again the irrelevance of the form of the approximation of D̃ŷĤ, which is the only term that
changes between the original scheme and this iterative scheme.

Unconditional Linear Stability
Another advantage of this approach to iterative solution is that it has unconditional linear stability, since for
a linear system, D̃ŷĤ is constant, the scheme converges in a single iteration, and is the unconditionally
stable implicit midpoint method.

This second order accuracy after one iteration for linear systems is seen in practice to carry over in part to
mildly nonlinear systems: for various test cases, the accuracy at each iteration is about what one would
expect with one more iteration of a standard explicit predictor-corrector approach.
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Energy Conservation: Only in the Limit k →∞
Energy however is only conserved in the limit as the iterates y(k) converge to y+.

However, assuming this convergence, sufficient iterations will give energy accuracy far greater than for a
scheme that does not conserve energy, such as a symplectic scheme.

Iterating until energy is accurate within rounding error is typically practical: if this take too many iterations,
it is better for overall accuracy to reduce the time step size h to speed the convergence.

Handling General Elementary Function Hamiltonians
When this iterative method is applied for a non-algebraic Hamiltonian, the difficulties noted above with the
definition of (D̃x)f(x, x+) in (22) only apply to the term (∇̃ŷĤ)(ŷ, ŷ(k)) and instead of depending on the
unknown y+, this depends only on the already-known quantities y and y(k).

Thus one knows whether to use the difference quotient form or the exact derivative at each iteration.

(More carefully, the exact derivative should be used if the relevant denominator is smaller than some thresh-
old related to rounding error.)

3.3 Higher Order Accuracy by Symmetric Step Composition

Higher Order Accuracy by Symmetric Step Composition
The methods seen so far are only second order accurate in time.

Fortunately, the method of symmetric step composition [Creutz&Gocksch 1989, Forest 1989, Suzuki 1990,
Yoshida 1990] gives a systematic way to construct methods of any higher even order while preserving all
the interesting properties: conservation of the Hamiltonian and quadratic invariants, and time-reversal sym-
metry.

The idea is to start with a basic symmetric time-stepping method and construct a composite step from a
sequence of s basic steps, of lengths

β1h, . . . , βsh.

Conditions on the Step Size Factors βi
The obvious consistency condition is that

β1 + · · ·+ βs = 1.

If in addition the basic method is of even order p then choosing the step size factors βi with

βp+1
1 + · · ·+ βp+1

s = 0

and the symmetry condition
βs+1−i = βi, 1 ≤ i ≤ s

ensures that the composite step is also time-reversal symmetric, and of even order p+ 2.

Additional conditions can be found to impose any desired even order of accuracy.
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The Triple-Jump and Suzuki Fractal Methods
The simplest such method is the triple-jump, with three steps:

β1 = β3 =
1

2− 21/p+1
, β2 = 1− 2β1 =

21/p+1

2− 21/p+1
.

Unfortunately, the steps go out of the range from tτ to tτ+1, as all step size factors are greater than one in
magnitude.

For example, with p = 2 as for the midpoint method, β1 ≈ 1.35 and β2 ≈ −1.70.

Thus a better approach is the five-step Suzuki fractal method, where all |βi| < 1:

β1 = β2 = β4 = β5 =
1

4− 41/p+1
, β3 = 1− 4β1 =

41/p+1

4− 41/p+1
.

For p = 2, the factors are β1 ≈ 0.41, β2 ≈ −0.66.

3.4 Aside: A Multi-gradient Method for Conserving All Invariants

Multi-gradient System Form
[McLaughlin et al 1999] introduces an extension of the discrete gradient method in which each member of a
collection of conserved quantities is given the same status as the Hamiltonian in a new multi-gradient system
form, leading to conservation of each by the same simple argument as was used for conservation of energy
above.

To help with notation, note that a general Hamiltonian system can be expressed as

dyn
dt

=
∑
m

JnmDmH

where J is anti-symmetric: Jnm = −Jmn.

For an autonomous system of equations
dy

dt
= f(y)

with a collection of invariants I1(y), I2(y), . . . , Ir(y), the main step is to express the differential equations
in terms of all of their gradients as

dyn
dt

=
∑

n1,...,nr

An,n1,n2,...,nrDn1I1(y) . . . DnrIr(y) (29)

where now A = A(y) is a function whose value at each y is a totally anti-symmetric (r + 1)-tensor:
interchanging the values of any two of its r + 1 indices negates the value.

Note that to conserve energy and momenta for a Hamiltonian system, the Hamiltonian itself is one of these
invariants.

This can be done so long as invariants are independent, in that their gradients

vi = DyIi

are linearly independent at each point y. To do so, first define the symmetric positive definite matrix B
with entries Bij = vi · vi. Then a suitable tensor A is

A =
1

detB
f ∧ v1 · · · ∧ vr.
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With the ODE system in this form, it is straightforward to verify that all the invariants are conserved by the
discrete multi-gradient method

δyn
δt

=
∑

n1,...,nr

J n,n1,n2,...,nrD̃1I1(y,y
+) . . . D̃rIr(y,y

+)

with any choice of the discrete gradient and any totally anti-symmetric approximation A(y,y+) ≈ A(y).
As before, the natural choice is the midpoint approximation J (y,y+) = J (y), giving second order accu-
racy.

Disadvantages of the Multi-Gradient Method: Severe Nonlinearity and Non-Locality
Although this method has the great advantage of being able to conserve invariants of arbitrary form, this
comes at the cost of a highly nonlinear form, due to that determinant in the denominator: for a Hamiltonian
system, that determinant depends on the gradient of the Hamiltonian DyH. The determinant also means
that the coupling of unknowns is in general non-local: the linear equations involved in iterative solutions
will in general be be full, not banded.

Thus, this approach might be well suited to highly nonlinear systems of ODE’s that have non-quadratic
invariants other than the Hamiltonian, but for the large quasi-linear systems described above, it loses the
quasi-linearity that is so useful in solving the discrete gradient method, and also for the midpoint method.

4 The Main Alternative: Symplectic Methods

Symplectic Methods: Discretizing Hamilton’s Principle
It is natural to compare the methods described above to the more famous symplectic methods, which can
also give conservation of quadratic invariants, and under suitable conditions are close to conserving energy.

For Hamiltonian H(q,p) a symplectic method is one with time advance map (q,p) → (q+,p+) given
implicitly by the equations

p = −D1S(q,q+), p+ = D2S(q,q+),

where Sh is the generating function ensuring that the map is symplectic.

Symplectic Methods as Discretizations of Hamilton’s Principle
This can be interpreted as a discrete approximation of the part of the action interval over time sub-interval t
to t+ h in the Lagrangian form of the equations: S = Lh ≈

∫ t+h
t L(q(s), q̇(s)) ds.

Thus, symplectic methods can be constructed as a discretization of the Lagrangian form of the equations,
via a discrete version of the Hamilton’s Principle given by the Cauchy-Euler equations for minimization of
the discretized action

Sh
({

qτ

}T
τ=0

)
=

T∑
τ=1

Lh(qτ−1,qτ ) ≈ S(q, q̇) =

∫ b

a
L(q(s), q̇(s)) ds.
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Conserving (Quadratic/Linear) Invariants
If this discretization Lh is invariant under a continuous symmetry group of the Lagrangian, then the cor-
responding Noetherian invariants quantities are conserved, by a discrete version of Noether’s Theorem
[GNI 2006, Section VI.6.4].

(Aside: Many background results are stated here without proof or citation, and in general these will be found
in this book Geometric Numerical Integration by E. Hairer, C. Lubich and G. Wanner.)

In practice, this can generally only be true for affine symmetries, and thus for quadratic (including linear)
invariants: the same limitation seen for discrete gradient methods.

The most famous and fundamental symplectic method is

The Implicit Midpoint Rule
y+ − y

h
= f

(
y + y+

2

)
given by Lh = L(Q, Q̇)δt. (30)

This is symmetric, unconditionally stable (A-stable), and Lh respects affine symmetries of L, so that
quadratic invariants are conserved.

It also works without reference to the Lagrangian form, convenient for Hamiltonian systems that are not of
standard mechanical formH(q,p) = T (q) + V (q). It has the suggestive form

Q̇ =
∂H
∂p

(Q,P),

Ṗ = −∂H
∂q

(Q,P).

(31)

The Störmer-Verlet Method (not useful here!)
One other basic symplectic method is given by using the trapezoid rule in the discrete Lagrangian in place
of the midpoint rule.

This gives

P = p− h

2

∂H
∂q

(P,q),

q+ = q +
h

2

(
∂H
∂p

(P,q) +
∂H
∂p

(P,q+)

)
,

p+ = p− h

2

∂H
∂q

(P,q+),

(32)

or an alternative version with the roles of q and p reversed.

This method is often called the Störmer-Verlet method: like the midpoint method, this is second order
accurate, symplectic, and time-reversal symmetric.

Mechanical Systems: the Leap-Frog Method
In that case of mechanical systems, the Störmer-Verlet method can be rewritten as the explicit 2-step leap-
frog method

M
qn+1 − 2qn + qn−1

h2
= −DqU(qn).
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More generally, for a system with separable HamiltonianH = T (p) + U(q), this method is still explicit:

P = p− h

2

∂U

∂q
(q), q+ = q + h

∂T

∂p
(P), p+ = p− h

2

∂U

∂q
(q+).

It was for such systems that the method was introduced by C. Störmer in 1903 for astronomical calculations,
and independently by L. Verlet in 1967 for molecular dynamics.

However for the more general systems considered here, the Störmer-Verlet Method is less versatile, less
stable, and less accurate than the implicit midpoint method, so will not be considered further here.

“Symplectic Methods Cannot Conserve Energy”
Symplectic methods such as the implicit midpoint method cannot conserve the Hamiltonian (“energy”),
except in degenerate cases, due to a theorem of [Ge & Marsden 1988].

More precisely, if a time discretization with uniform step size preserves both the symplectic form and the
Hamiltonian, then either

• the scheme is the exact time stepping map except for shifts in time, or

• the system decomposes into several parts for which the above is true.

Linear systems are the exception that proves the rule: The energy is quadratic and so is conserved by
symplectic methods such as the implicit midpoint rule. The system decomposes through action-angle vari-
ables into components with one dimensional orbits that are level curves of quadratic invariants for each
component. Note that the implicit midpoint rule and discrete gradient method are identical in this case.

Exponentially Small Errors In Energy
The non-conservation of energy by symplectic methods is mitigated in many cases by theorems which,
loosely speaking, guarantee that the error in energy is exponentially small in the time step size h for an
exponentially long time.

The exponential term is of the form e−h0/h where the time scale h0 is the inverse of the norm of the Jacobian
of the right-hand side of the equation, so the extraordinary accuracy of energy is only realized with step size
h significantly smaller than h0.

Note that h0 is roughly the time step size limit for

• stability of explicit schemes, and

• convergence of a simple fixed point iterative method for an implicit scheme.

Exponentially Small Errors In Energy: Not Useful For Stiff Systems
However, for stiff systems one typically wants to use step size h > h0, and even h� h0.

In this case, current best practice for Hamiltonian systems seems to be symmetric split step methods, in
which one sub-step is for the stiff, linear modes only, in turn done with many sub-steps or with an A-stable
method.
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Higher Order Symplectic Runge-Kutta Methods, by Step Composition
One way to produce symplectic methods with higher order of accuracy is to again use step composition.
Indeed this is what those step composition methods were first developed for.There is a sense is which this is
almost the best possible approach:

Theorem 4 ([GNI 2006], Theorem VI.4.4). Any [symmetric], symplectic, irreducible, diagonally implicit
Runge-Kutta [DIRK] method is given by [symmetric] step composition with the implicit midpoint rule as the
basic step.

Recall that s-stage DIRK methods are of the form

δy(k)

δt
= f

(
y +

∑k

j=1
αjkδy

(k)

)
, 1 ≤ k ≤ s,

δy =
∑s

k=1
βkδy

(k).

(The form is given only for autonomous systems, WSLOG.)

DIRK methods require implicit solution, but only for one approximate increment δy(k) at a time, in order.
Thus there is a correspondence between any such method a a composition of DG steps with the methods
identical for the linear parts of the equation.

Comparisons between the basic (second order) methods for equations like DNLS favor the DG method; it
remains to be seen how the corresponding higher order methods compare.

Fully Implicit Higher Order Symplectic Runge-Kutta Methods
One other category of symplectic methods is of interest: fully implicit s- stage Runge-Kutta methods

δy(k)

δt
= f

(
y +

∑s

j=1
αjkδy

(k)
)
, 1 ≤ k ≤ s,

δy =
∑s

k=1
βkδy

(k)

of Gaussian form, related to Gaussian quadrature formulas and, like them, of order 2s.

The case s = 1 gives the Implicit Midpoint Method again, while s = 2 give the fourth order Gaussian
method

δy(1)

δt
= f

(
y +

1

4
δy(1) +

(
1

4
− 1

2
√

3

)
δy(2)

)
δy(2)

δt
= f

(
y +

(
1

4
+

1

2
√

3

)
δy(1) +

1

4
δy(2)

)
δy =

δy(1) + δy(2)

2
.
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5 Discrete Gradient vs Symplectic Methods, for Stiff Systems

Discrete Gradient vs Symplectic Methods
For general (non-stiff) systems where one wishes to resolve all time scales in the solution accurately, evi-
dence suggests that a Gaussian method solved by fixed point iteration is usually the best approach.

However, this assumes that one is wiling to use time steps h < h0, and further that either one is willing to use
step sizes small enough to get extraordinary (exponentially small) errors in energy, or that such extraordinary
accuracy is unimportant.

If instead one wishes to solve a stiff system with step size h > h0, so that simple fixed point iteration cannot
be used:

1. the cost-accuracy balance move in favor of the DIRK symplectic methods given step composition of
the midpoint rule over Gaussian methods, and

2. energy accuracy and empirical observations favor the corresponding step compositions of the discrete
gradient method over symplectic DIRK methods.

6 Numerical Results and Partial Explanation

We conclude with a few numerical results, first to test the method, and then make a few observations about
continuum limits of DNLS equations.

6.1 Testing With The Non-Locally Nonlinear DNLS

For a comparison of the discrete gradient method to the popular symplectic implicit midpoint method, illus-
trating some advantages for the discrete gradient method in preserving qualitative features of solutions, the
equations solved are the nonlocal discrete nonlinear Schrödinger equation (13)

A continuum limit approximation of assuming slow variation along the chain leads to the cubic focusing
nonlinear Schrödinger equation

i
∂z

∂t
+
∂2z

∂x2
+ 2|z|2z = 0

with solutions including the hyperbolic secant solitons

u(t, x) = A sech(A(x− vt)) exp

[
− i

2
(vx− (v2/4−A2)t)

]
.

Thus initial data is chosen to see how closely solutions of the DNLS system resemble these solitons.

Specifically, initial data is of the form above except of double the height, so that in NLS a soliton plus other
radiation is expected to develop.

However, accuracy is tested without relying on the continuum limit, but comparing to an effectively exact
solution computed by using time step so small that further reduction produces no visible change, and the
results agree between methods.
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Figure 2: NLDNLS, A = 2: |un| at time t = 40000.
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Figure 3: NLDNLS, A = 2: |un| at time t = 40000, methods of roughly equal time cost.
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6.2 Numerical Observations on The Helical Discrete Nonlinear Schrödinger Equation

Results for the Helical DNLS System
The final numerical results are for Helical DNLS system with impulsive initial data at one end of the molec-
ular chain,

u1(0) = 1 and un(0) = 0 for n > 1,

and more generally with un(0) = 0 for n > 2.

Numerical Observations
Several features are seen in the graphs here and confirmed for a wide range of impulse initial data, initial
nonzero on only the first one or two nodes:

1. A leading pulse with slowly varying amplitude, and speed of approximately 12.8 (nodes per unit
time), followed by a decreasing oscillatory tail, reminiscent of the Airy function Ai.

2. The tail with slow amplitude variation extends over the front half of the nodes behind which it is
interrupted by a second pulse and the end of slow amplitude variation: the the pulse width is growing,
but the spatial period of its oscillations varies little, so the number of oscillations increases.

3. However, the signal is not slowly varying, because the phase shifts by roughly a factor i between
consecutive nodes.

4. This is seen in the near-linear case of very small amplitude, but the proportion of the charge in the
pulse increases as total charge (degree of nonlinearity)

5. At even larger amplitudes, the lead hump becomes more dominant and the form moves towards a
somewhat sech-like pulse surrounded by far lower amplitude oscillations. However the in phase
pattern persists, so there is still no NLS continuum limit.

6. Similar behavior is seen in the basic DNLS equation, but with differences such as reversal of the
phase factor to (−i)n.

6.3 A Different Continuum Limit for Various DNLS Models

Linear Dispersion Relation and Signal Speed
The explanation of these phenomena seems to come from the linearization and bifurcation there-from, re-
lated to work of [Pelinovsky&Rothos 2005] and [Kevrekidis et al 2007].

First, consider the linear part of the HDNLS equation

i
dun
dt

+K(un+3 + un−3)− L(un+1 + un−1) = 0

and seek travelling waves of the form

un = φ(z)eiβn+ωt, z = n− vt, φ(z) = eikt

with an emphasis on slow variation in the sense of small values of ω and k. This gives the dispersion relation

ω(k) = kv + 2L cos(3(k + β))− 2K cos(k + β).
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Figure 4: HDNLS: |un|2 at time t = 20, 30, 40.
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Figure 5: HDNLS: |un|2 at time t = 20, 30, 40, near main pulse — a continuum limit?
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Figure 6: HDNLS: Re(un) at time t = 40 — no continuum limit!
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Figure 7: HDNLS: Re(inun) at time t = 40: — maybe a continuum limit now.
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The inflection points at k = 0, ω′(0) = 0 gives group velocity

v = 6L sin(3β)− 2K sin(β)

with maximum signal speed

vmax = 6L− 2K ( = 13 for the physical parameter values used here)

occurring for β = −π/2, and thus ω = 0.

This corresponds to small amplitude solutions of the form

zn ≈ (−i)nφ(z)eiωt,

with k and ω small, so that the quantity that varies slowly along the lattice is not zn but

wn := inzn.

A Different Continuum Limit
A continuum limit expansion in the limit of a small, slowly varying solution wn(t) ≈ εw(ε3t, z) and a
few others rescalings to normalize constants gives what is sometimes called the third derivative nonlinear
Schrödinger equation

∂w

∂t
=
∂3w

∂z3
+ i2|w|2w.

Linear Approximation: The Airy Diffusion Equation
The linear part is the strangely named “Airy Diffusion Equation”, with solution for u(0, z) = f(z) given in
terms of the Airy function Ai as

w(t, z) =

∫ ∞
−∞

f(y)

(3t)(1/3)
Ai
[
(z − y)(3t)(1/3)

]
dy

Thus with suitable impulsive initial data and boundary conditions there is a slowly decaying and spreading
solution

w(t, z) =
1

(3t)(1/3)
Ai
[
(z − y)(3t)(1/3)

]
.

Approximate Solutions of Discrete System: Airy Function Pulses
Put back in terms of x = z + vt and wn(t), this corresponds to an approximate solution of the discrete
system with

• Airy function profile.

• Approximately traveling wave form, of speed 2L+ 6K = 13.

• Slow decrease in amplitude and broadening, with time scale t1/3.
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Nonlinear Self-Focusing Effects? Deviation from Airy Function Pulse Form
This does not fit exactly what is seen due to its doubly infinite domain and infinite charge, but it seems to
contains some essential elements of the actual solutions seen.

One difference is that the solutions of HDLNS do not appear to spread at rate t1/3.

Perhaps this is the familiar control of dispersion by nonlinear focusing. This idea is supported by the
numerical observation that for stronger nonlinearity, the lead pulse is higher and narrower, and shows little
or no time-decay in amplitude.

7 Some Plans

1. Implement and assess performance of the fourth order discrete gradient methods given by the Suzuki
fractal method, and compare to currently preferred methods such as the fourth-order Gauss method
the symplectic diagonally implicit Runge-Kutta method given by Suzuki composition of midpoint
steps, and split-step methods for stiff Hamiltonian systems.

2. Study other systems, such as 2D lattice equations from models of thin bio-molecular films, and
models of multiple-core fiber optics.

3. Add small dispersion while retaining correct conservation of charge and accurate evolution of energy.

4. Add fixed pattern noise and stochastic terms.

5. Find out more about the new continuum limit equation

∂z

∂t
=
∂3z

∂x3
+ 2i|z|2z.

6. Analyze bifurcation of solutions of HDNLS from the linear plane wave solutions at k = ω = 0.
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