Fracture Zone lies in an east-west orientation at $\sim 40.5^{\circ} \mathrm{N}$ and runs perpendicular to the MAR just
of the Azores. Searle and Laughton (1977) concluded that this fracture zone did not have similar features to other transform plate boundaries. They found that the fracture zone had a sawtooth shape fault scarps. In 2022, NOAA Ship Okeanos Explorer conducted an expedition, Vovage to the Ridlae, with the goal to map in high resolution a large portion of the MAR, including the Kurchatov Fracture Zone area (NOAA Ocean Exploration 2022, EX-220
Common features along mid-ocean ridge sites include hydrothermal vents, pillow basalts, and consecutive axis-parallel peaks that result from seafloor spreading. The diagram shown below (from
Olive et al., 2015) demonstrates how pockets of magma form within a lithospheric plate, rise upward Olive et al.,., 2015 demonstrates how pockets of magma form within a lithospheric plate, rise upward
towards the seafloor through elongate fissures at the ridge axis, then cool, generating new seafloor. Expansion due to the plates' diverging causes these new vertical slabs of seafloor to fault and tip awa from the axis. The resultant seafloor features are here referred to as axis-parallel ridges (APRSs), also known as abyssal hills. Usually, these sites lack benthic organisms due to their fairly new substrate. Typical MAR ridge segments have many APRS, as shown in the figure below The purpose of this study is to examine seafloor
geomorphology on either side of the MAR, and to compare tectonic features on both plates. Sonar data were used to generate bathymetry, slope, aspect and backscatter surfaces, as
well as depth profiles. This expedition also included multiple ROV dives, with photographs and footage from three diffferen sites within the study area. ROV images are used to ground-

Mid-Atlantic Ridge Geomorphology
at Kurchatov Fracture Zone Eric Wehmever and Dr. Leslie R. Sautier

METHODS
conducted multibeam sonar surveys of
the MAR on expedition EX2205 equippec The MAR on expeaition EX2205 equipped
with a Konssberg EM304 multibeam - Sonar data were processed using CARIS HIIPS and SIPS 11,4 to produce surfaces of
bathymetry, classified siope and classified bathymetry, classified slope and classified
backscatter intensity mosaics. backscatter intensity mosaics.

- Several depth profiles were made to - Several depth profiles were made to
compare slopes and vertical relief of axisparallellel ridges of similar features.
ROV Deep Discoverer conducted thre Rov Deep Discoverer conducted inree
separate dives (EX2202-06,07,08), to
ent examine geomorphology and collected
biological samples.

West Flank, on the North American Plate moving westward, has depths ranging 620 to 3100 m . A large volcanic seamount named the Redonda lies on the western portion of the site and was explored
during EX2205-Dive08. The substrate mainly consists of jagged pieces of basalt with many deep-sea during EX2205-Dive08. The substrate mainly consists
corals and sponges growing on the hard substrate.

Many uniform axis-parallel ridges Slopes within the KFZ are low (2- Low backscatter intensity is
are present along the West
Flank. The KFZ depth is 3100 m , ARs however, have a slope of associated with lowest slopes.
F40 due to the steaver crests that

The ridge axis is the cross section between the MAR and the Kurchatov Fracture Zone, with a maximum
depth of $\sim 3400 \mathrm{~m}$ at the intersection. A large cliff lies at the north end of the site, with a shoalest depth of depth of ~ 3400
about 1300 m .

This intersection of the KFZ and This intersection of the KFZ and
MAR axis at $\sim 3400 \mathrm{~m}$ is the deepe MAR axis at $\sim 3400 \mathrm{~m}$ is the deepest
point, creating a broad trough-like valley, with the youngest APRs acting as valley walls.

Highest slope of $\sim 50^{\circ}$ occurs along ighest slope of $\sim 50^{\circ}$ occurs alon the northere faull leading down
into the axial valley, and lowest slopes of $\sim 2^{\circ}$ are present at the slopes of of the cross section.

Lowest intensities occupy the greatest denths are within 0°
to 50. Highest intensities occur on the northern fault

Figure 4. East Flank
East Flank lies on the Eurasian plate and spreads in an eastward direction. When comparing this site to West Flank, the APRs are truncated by the fracture zone, which generated a fault. Along the fault lies a steep cliff, or fault scarp (FS) that in some parts drops from 900 to 2400 m .

Profiles are aligned to
compare axis-parallel ridges (APRs), centered around a
large valley between ridges dashed blue line). Vertical dashed blue line). Vertical
relief (VR) increases southward from 1,755 to $2,000 \mathrm{~m}$ at
the APR closest to te MAR the APR closest to the MAR
axis (red dashed line) axis (red dashed line).

ACKNOWLEDGEMENTS

DISCUSSION and CONCLUSIONS

Across the study are there are multiple loctions of certain features common to other mid-ocean ridges. Both Fast and West fle dist

 Across the study area there are mulipie locations of certain features common to other mia-ocean rioges. Boin East and west fanks ispolayuniform axis-parallel ridges (APRS) that result from spreading of new seaflioor formed at the axis over the last 5 million years (Mueller, 2008). At Flank, and are a mirror image on the East Flank. Backscatter intensity shows an equally high intensity on each side of most APR crests, suggesting the basaltic rock is exposed without sediment cover on each side. Lower intensities found within troughs between APRS, and within The
the broad vallley at the intersection of MAR and KFZ may be due to a substrate with unconsolidated sediments,
Two northern ridge of the study area, the deep reef ecosystem discovered was exceptionally large. This habitat corresponds with an area of high Walls of the volcano. A crucial Hoplostethus atlanticus population was also observed. This species of fish is important, as it has been overfished and has a sow sexual maturity rate,
Aurrther deepp-sea coral research should be conducted within the northern most ridge of this study area to locate other benthic ecosystems,
Additional bathymetric sonar data to fill in the large data gap between East and West Flanks would allow for improving our understanding of Acoitional pathymetric sonar data to fill in the large data gap between East and West flanks would allow for improving our understanding of
spreading pattems between both sides of the MAR associated with a fracture zone.

