BACKGROUND
Suomarine canyons represent important geological features that have the ability to
oth support and threaten life above and below the sea surface. Steeply sloped canvo Walls can provide underwater haboitats for corals sand other marine lifee, but unstable Sopes can also fail, creating underwater landslides that have the potential to generate
tsunamis (Driscoll et al., 2000). The formation of submarine canyons is thought to be linked to slope failures that create sediment slumps and carve away at rock scarps (Hill et al., 2014). However, the causes of these slope failures remain largely uncertain, but links
to high sedimentation rates have been hypothesized (Hill et al., 2014; Hill et al. 2017) to high sedimentation rates have been hypothesized (Hill et al., 2014; Hill et al., 2017).
Currituck, located approximatelv 93 km east of the North Carolina coast, is a Curirituck, located approximately 93 km east of the North Carolina coast, is a ranges from 200 to 2400 m in depth, with the upper section having a gentle slope. Towards the middle of the study area, there is a steeper section before advancing towards the abyssal plain. Located within the study area are multiple examples of
submarine landslides that appear to be developing into submarine canvons. Currituc submarine landslides that appear to be developing into submarine canyons. Currituck, canyons (Hoy, 2021).
cal Recent NOAA Ship Okeanos Explorer missions, including EX1903L2 and EX2103 conducted along the mid-Atlantic continental margin have expanded bathymetric sonar ROV data for Currituck. Utilizing bathymetric cata, three stuay sites have been ice
consisting of two submarine canyons and a lower headwall pocketed with past
submarin endlsides. The sites are here referred to as North Canyon Central Cand consisting of two submarine canyons and a ower headwall pocketed with past
submarine landslides. The sites are here referred to as North Canyon, Central Canyon, and South Canyon, and have depths ranging from $200-1600 \mathrm{~m}, 1100-1900 \mathrm{~m}$, and 600 -
150 m , respectively. ROV HD video from EX1903L2 - Dive 15 was utilized to ground1500 m , respectively. ROV HD video from EX1903L2 - Dive 15 was utilized to ground-
truth bathymetric data and visualize seafloor habitats and biota. The purpose of this truth bathymetric data and visualize seafiloor nabititat and
study is to understand the geomorphology of the Currituck region to provide insight in
. Curituck Study Area and Site Location

The Currituck study area is located on the North American East Coast continenta
margin approximately 93 km from the North Carolina coast. The depth of the margin approximately 93 km from the North Carolina coast. The depth of the
study area ranges from 200 to 2400 m Within the study area study area ranges from 200 to 2400 m . Within the study area are three study sites
that feature submarine canyons. The sites here are referred to as North Canyon that feature submarine canyons.
Central Canyon, and South Canyon.

METHODS

- Multibeam sonar data were collected on expeditions EX1903L2 and EX2103 aboard the NOAA Ship

Okeanos Explorer using a Kongsberg EM 302 and EM 304 , respectively.
HD video of benthic habitats was collected with Rov Deep Discoverer during EX1003L2 - Dive 15 . CARIS $\mathrm{HIPS} \&$ SIPS 11.4 was used to process raw mutibeam sonar data and droduce 20 m
m resolution CuBE bathymetric and slope surfaces, contour lyerers and depth profiles. - m resolution CUBE bathymertic and slope surfaces, contour layers and deptro profiles. - Geomorphology of submarine canyons was compared using vertical relife and channel symmetry. at the intersection of the main chasnel axis profile and contour lines.

thalweg skewed to the south (see diagram at right), and
CSI 1 is an asymmetric channel with the thalwes sewed to the north.
ACKNOWLEDGEMENTS
 art of the College of Charleston BEAMS Program. Support to a tutend
generously provided by the Matt Christie BEAMS Support Fund.

jamesji@g.cofc.edu and SautterL@cofc.edu

Figure 5. Comparative channel axis profiles

 Canyon axis profiles were drawn from the canyon head to where the slopeffattened. Axis lengths ranged from 3800 at central Canyon, to 15,000 at South Canyon.
The North Canyon axis has the greatest vertical relief (VR) of
the 3 canyons (1000 m) and displays a consistent low slope of the 3 canyons (1000 m) and displayy a consistent
5.9 to $6.8^{\circ}{ }^{\circ}$ ver a depth range of 600 to 1600 m . Central Canyon features a VR of 600 m , and a variab gradient with 5.2° slope in the upper 100 m , then steepens to
23.5° between depths of 1400 and 1600 m , returning to 5.6° 23.5° between depths of 1400 and 1600 m , returning to 5.6°
from 1600 to 1900 m .

South Canyon has lowest VR (530 m), the lowest sloping

 channel axis ($0.6-3.8^{\circ}$

Figure 6. Comparative cross-channel profiles

Canyons formed distinctive groupings in terms of symmerry, with Central canyon being the most symmetric. South Canyon's cross-channel profiles display the least groupings, with the three deepest profiles outlined in dark blue being asym groupings, with the three deepest profilies outlined in dark blue being asymmetrical
to the north, whereas the shallower profiles appear more symmetrical. This suggests that as canyons develop, they become less symmetric.

SUMMARY

Three stuay sites were chosen within the Currituck submarine landslide complex, and canyon geomorphology was characterized using canyon axis and cross-channel depth ofiles. North and South Canyons are longer, more asymmetric, and display low-Slopin and U-shaped cross-channel profiles.
Geomorphology results suggest that as canyons develop over time, they become less symmetric. Central Canyon's stuay indicates that possioiv younger, less developed anyons such as North and South Can canyons, such as North and South Canyons, have longer, lower axis slopes and higher
geomorphologic cross-channel variation. Over time, canyons develop this variation through repeated slope failures and sediment transport. As an area filled with past submarine landslides, Central Canyon's morphology suggests that submarine canyons form through repeated slope failures that later result in canyons carving upslope into headwalls and scarps.

