Other Sources, Same Ideas

Two interesting links crossed my digital landscape today. One contained the link to the infographic below, found originally at http://www.citytowninfo.com/infographics/women-in-science. TItle: Under the Microscope: Women in Science: The challenges and opportunities for women interested in scientific careers. At the bottom of the infographic, the question “How can we continue to attract more women to science careers?” They highlight three key points, two of which I pointed out in my post yesterday on Gender & Mathematics:

  • Create tenure policies that provide flexibility for parental leave. I would extend this to all of the college and university instructorship, not just the tenure-track lines. There are lots of female scientists who, like me, have devoted their careers to postsecondary teaching and scholarship who are not in tenure-track jobs and who are not looking for a tenure-track appointment.
  • Provide support for the work-life balance. One response I’ve received about my post yesterday is that it isn’t just mathematics or science or academia that needs better accountability for the work-life balance problem. This is clearly true and it was never my argument that every other career path is daffodils for working parents. Nevertheless, this argument amounts to, “Well, other careers can also be miserable for parents and families, so there’s really no reason for us to work to have better policies in academia.” It seems obvious that everyone should have family-friendly, people-friendly, parent-friendly policies at their workplace, no?

The second link that caught my attention was an article posted by the Center for Excellence in Education. Their stated goal is as follows:

The Center’s mission is to nurture high school and university scholars to careers of excellence and leadership in science, technology, engineering and mathematics, and to encourage collaboration between and among leaders in the global community.

The article they posted today was titled “How to Create an Undergraduate Physics Program in Which Women Can Excel.” It was written by Janice Hudgings, Physics Department Chair and Associate Dean of Faculty, Mount Holyoke College. The entire article is certainly worth reading to anyone invested in undergraduate degree programs in science and who wonders about how to attract more women to STEM careers. The following is one of Hudgings’s suggestions [emphasis mine]:

All faculty in the department should be committed teachers, using active teaching and learning techniques.  Replace the dry, boring lectures with classrooms full of students who are arguing in small groups, gesturing, laughing, and actively engaging with physics.

This is precisely the point I made yesterday: Our lecture-based classrooms select for students who are great at learning from a lecture. Those students become our majors, and the best of those we mold into the future crop of graduate students, and then some of those go on to become our professorship. And we end up with generation after generation of professors who learned via lecture, who teach via lecture, and who wonder why there’s a need to do anything differently. I’m an active proponent of a classroom that looks different from that tradition, not just because I think it would benefit a particular subgroup of students, but because I think it would benefit all of our students. We need students who are actively engaged with the material — both in and outside of the classroom.

I’ve heard the argument made, by people who have very good intentions, that they would love to have more female and minority math majors, but those types of people just aren’t as interested in the subject. As Hudgings points out,

It can be very difficult for underrepresented groups of students, including women, students of color, community college transfer students, and low income students among others, to hear even heartfelt messages of belonging against a broader societal backdrop that is saying the opposite.

This has certainly been my experience. While in many, many cases I’ve felt nothing but welcomed, I do notice that I’m in a minority group. In departmental meetings, it’s easy to count that there are over 30 attendees (but only six women). The small percentage of female math professors has been obvious in every math department I’ve visited, over many years, in many places. Since I know that women can and do excel in mathematics, the lack of women among the math professoriate makes me wonder where they all went. In 2007-2008, 27% of new doctorates in mathematics and computer science went to women. Yet I don’t think I’ve come across a math department where 27% of the tenured faculty members are women. (And I don’t think this is all explained by the “trickle upward” time.)

Where are the women going? When I noticed this discrepancy as an undergraduate student and as a graduate student, I wondered why there weren’t more female tenured math professors. The “brain drain of women from STEM careers”  has been a hot topic of recent research. See “Technical fault: The worrying brain drain of women from science and technology” or the Harvard Business Review’s “The Athena Factor: Reversing the Brain Drain in Science, Engineering, and Technology” or 24000 other scholarly articles. As Hudgings concludes,

But strong academics must be combined with a student-friendly department environment that reinforces a message of “you are welcome here.”  That message can be difficult for women to hear against a broader cultural backdrop of discouragement, so it must be repeated over and over.

Hudgings offers a number of suggestions for specific things a department could do, apart from the obvious one of making sure the faculty is diverse. I’d love to see my own department implement several of her suggestions.

Women in Science: Under the Microscope

Courtesy of: Citytowninfo.com