Lauren Tubbs
Problem 295, Math Horizons, Volume 21, No. 1, September 2013

Theorem 1. If n is odd, then $n^{2}+19$ has at least 6 divisors.
Proof. Let $n=2 k+1$ for some $k \in \mathbb{Z}$. Then $n^{2}+19=4\left(k^{2}+k+5\right)$ has at least six factors $1,2,4, \frac{n^{2}+19}{4}, \frac{n^{2}+19}{2}$, and $n^{2}+19$. To see that these factors are distinct, suppose $4 \geq \frac{n^{2}+19}{4}$. Then $n^{2} \leq-3$, a contradiction. Hence we have $1<2<4<$ $\frac{n^{2}+19}{4}<\frac{n^{2}+19}{2}<n^{2}+19$.

Theorem 2. If n is odd, then $n^{2}+119$ has at least 8 divisors.
Proof. Let $n=2 k+1$ for some $k \in \mathbb{Z}$. Then $n^{2}+119=4[k(k+1)+30]$. Moreover the quantity $k(k+1)+30$ is always even, say $2 m$ for $m \in \mathbb{Z}$. Hence $n^{2}+119=8 m$ and $n^{2}+119$ is divisible by at least eight numbers $1,2,4,8, \frac{n^{2}+119}{8}, \frac{n^{2}+119}{4}, \frac{n^{2}+119}{2}$, and $n^{2}+119$. Suppose $8 \geq \frac{n^{2}+119}{8}$. Then $n^{2} \leq-55$, a contradiction. So we must have $8<\frac{n^{2}+119}{8}$, hence the divisors are distinct.

Theorem 3. If n is odd, then 11 is the smallest number a such that $n^{2}+a$ has at least 6 divisors.

Proof. Let $n=2 k+1$ for some $k \in \mathbb{Z}$. Then $n^{2}+11=4\left(k^{2}+k+3\right)$. Hence $n^{2}+11$ is divisible by at least six numbers $1,2,4, \frac{n^{2}+11}{4}, \frac{n^{2}+11}{2}$, and $n^{2}+11$. Suppose $2 \geq \frac{n^{2}+11}{4}$. Then $n^{2} \leq-3$, a contradiction. Hence $1<2<\frac{n^{2}+11}{4}<\frac{n^{2}+11}{2}<n^{2}+11$.

Now we show that 4 is not equal to any of these five numbers. Suppose $4=\frac{n^{2}+11}{4}$. Then $n^{2}=5$, a contradiction. Hence $4 \neq \frac{n^{2}+11}{4}$. Now suppose $4 \geq \frac{n^{2}+11}{2}$. Then $n^{2} \leq-3$, a contradiction. Hence $4<\frac{n^{2}+11}{2}$, and 4 is a distinct sixth divisor.

Suppose there is an $a<11$ such that $n^{2}+a$ has at least six divisors. When $n=1$, then $1+a<12$ has at least six divisors. But 12 is the smallest number with six divisors. Therefore 11 is the smallest number a for which the claim holds.

Theorem 4. If n is odd, then 47 is the smallest number a such that $n^{2}+a$ has at least 8 divisors.

Proof. Let $n=2 k+1$ for some $k \in \mathbb{Z}$. Then $n^{2}+47=4[k(k+1)+12]$. Moreover the quantity $k(k+1)+12$ is always even, say $2 m$ for $m \in \mathbb{Z}$. Hence $n^{2}+47=8 m$ and $n^{2}+47$ is divisible by at least eight numbers $1,2,4,8, \frac{n^{2}+47}{8}, \frac{n^{2}+47}{4}, \frac{n^{2}+47}{2}$, and $n^{2}+47$. Suppose $4 \geq \frac{n^{2}+47}{8}$. Then $n^{2} \leq-15$, a contradiction. So we must have $4<\frac{n^{2}+47}{8}$, hence the divisors are distinct.

Now we show that 8 is not equal to any of these seven numbers. Suppose $8=\frac{n^{2}+47}{8}$. Then $n^{2}=17$, a contradiction. So we must have $8 \neq \frac{n^{2}+47}{8}$. Now suppose $8 \geq \frac{n^{2}+47}{4}$. Then $n^{2} \leq-31$, a contradiction. So $8<\frac{n^{2}+47}{4}$, and 8 is a distinct eighth divisor.

Suppose there is an $a<47$ such that $n^{2}+a$ has at least eight divisors. When $n=1$, then $1+a<48$ has at least eight divisors. There are five numbers below 48 with eight
divisors: $24,30,36,40$, and 42 . Hence a can only be $23,29,35,39$, and 41 . When $a=23,29,35$, and $41,3^{2}+a$ has only six, four, six, and six divisors, respectively. When $a=39,5^{2}+a$ has only seven divisors. Therefore 47 is the smallest number a for which the claim holds.

