Lauren Tubbs Problem 295, Math Horizons, Volume 21, No. 1, September 2013

Theorem 1. If n is odd, then $n^2 + 19$ has at least 6 divisors.

Proof. Let n = 2k + 1 for some $k \in \mathbb{Z}$. Then $n^2 + 19 = 4(k^2 + k + 5)$ has at least six factors 1, 2, 4, $\frac{n^2+19}{4}$, $\frac{n^2+19}{2}$, and $n^2 + 19$. To see that these factors are distinct, suppose $4 \ge \frac{n^2+19}{4}$. Then $n^2 \le -3$, a contradiction. Hence we have 1 < 2 < 4 < 1 $\frac{n^2 + 19}{4} < \frac{n^2 + 19}{2} < n^2 + 19.$

Theorem 2. If n is odd, then $n^2 + 119$ has at least 8 divisors.

Proof. Let n = 2k + 1 for some $k \in \mathbb{Z}$. Then $n^2 + 119 = 4[k(k+1) + 30]$. Moreover the quantity k(k+1) + 30 is always even, say 2m for $m \in \mathbb{Z}$. Hence $n^2 + 119 = 8m$ and $n^2 + 119$ is divisible by at least eight numbers 1, 2, 4, 8, $\frac{n^2+119}{8}$, $\frac{n^2+119}{4}$, $\frac{n^2+119}{2}$, and $n^2 + 119$. Suppose $8 \ge \frac{n^2 + 119}{8}$. Then $n^2 \le -55$, a contradiction. So we must have $8 < \frac{n^2 + 119}{8}$, hence the divisors are distinct.

Theorem 3. If n is odd, then 11 is the smallest number a such that $n^2 + a$ has at least 6 divisors.

Proof. Let n = 2k + 1 for some $k \in \mathbb{Z}$. Then $n^2 + 11 = 4(k^2 + k + 3)$. Hence $n^2 + 11$ is divisible by at least six numbers 1, 2, 4, $\frac{n^2 + 11}{4}$, $\frac{n^2 + 11}{2}$, and $n^2 + 11$. Suppose $2 \ge \frac{n^2 + 11}{4}$. Then $n^2 \le -3$, a contradiction. Hence $1 < 2 < \frac{n^2 + 11}{4} < \frac{n^2 + 11}{2} < n^2 + 11$.

Now we show that 4 is not equal to any of these five numbers. Suppose $4 = \frac{n^2 + 11}{4}$. Then $n^2 = 5$, a contradiction. Hence $4 \neq \frac{n^2+11}{4}$. Now suppose $4 \geq \frac{n^2+11}{2}$. Then $n^2 \leq -3$, a contradiction. Hence $4 < \frac{n^2+11}{2}$, and 4 is a distinct sixth divisor. Suppose there is an a < 11 such that $n^2 + a$ has at least six divisors. When n = 1,

then 1 + a < 12 has at least six divisors. But 12 is the smallest number with six divisors. Therefore 11 is the smallest number a for which the claim holds.

Theorem 4. If n is odd, then 47 is the smallest number a such that $n^2 + a$ has at least 8 divisors.

Proof. Let n = 2k + 1 for some $k \in \mathbb{Z}$. Then $n^2 + 47 = 4[k(k+1) + 12]$. Moreover the quantity k(k+1) + 12 is always even, say 2m for $m \in \mathbb{Z}$. Hence $n^2 + 47 = 8m$ and $n^2 + 47$ is divisible by at least eight numbers 1, 2, 4, 8, $\frac{n^2+47}{8}$, $\frac{n^2+47}{4}$, $\frac{n^2+47}{2}$, and $n^2 + 47$. Suppose $4 \ge \frac{n^2+47}{8}$. Then $n^2 \le -15$, a contradiction. So we must have $4 < \frac{n^2+47}{8}$, hence the divisors are distinct.

Now we show that 8 is not equal to any of these seven numbers. Suppose $8 = \frac{n^2 + 47}{8}$ Then $n^2 = 17$, a contradiction. So we must have $8 \neq \frac{n^2+47}{8}$. Now suppose $8 \geq \frac{n^2+47}{4}$. Then $n^2 \leq -31$, a contradiction. So $8 < \frac{n^2+47}{4}$, and 8 is a distinct eighth divisor. Suppose there is an a < 47 such that $n^2 + a$ has at least eight divisors. When n = 1,

then 1 + a < 48 has at least eight divisors. There are five numbers below 48 with eight

divisors: 24, 30, 36, 40, and 42. Hence *a* can only be 23, 29, 35, 39, and 41. When a = 23, 29, 35, and 41, $3^2 + a$ has only six, four, six, and six divisors, respectively. When a = 39, $5^2 + a$ has only seven divisors. Therefore 47 is the smallest number *a* for which the claim holds.