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Energetic pulses in exciton-phonon molecular chains and conservative numerical methods
for quasilinear Hamiltonian systems
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The phenomenon of coherent energetic pulse propagation in exciton-phonon molecular chains such as α-helix
protein is studied using an ODE system model of Davydov-Scott type, both with numerical studies using a
new unconditionally stable fourth-order accurate energy-momentum conserving time discretization and with
analytical explanation of the main numerical observations. Impulsive initial data associated with initial excitation
of a single amide-I vibration by the energy released by ATP hydrolysis are used as well as the best current estimates
of physical parameter values. In contrast to previous studies based on a proposed long-wave approximation by
the nonlinear Schrödinger (NLS) equation and focusing on initial data resembling the soliton solutions of that
equation, the results here instead lead to approximation by the third derivative nonlinear Schrödinger equation,
giving a far better fit to observed behavior. A good part of the behavior is indeed explained well by the linear part
of that equation, the Airy PDE, while other significant features do not fit any PDE approximation but are instead
explained well by a linearized analysis of the ODE system. A convenient method is described for construction
of the highly stable, accurate conservative time discretizations used, with proof of its desirable properties for a
large class of Hamiltonian systems, including a variety of molecular models.
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I. INTRODUCTION

Exciton-phonon systems of ODEs are used to model a
variety of molecules in which mobile quantum excitations
are present along with mechanical degrees of freedom. A.
Davydov [1–3] introduced such a model to study energy propa-
gation in α-helix protein, present, for example, in the myocins,
kenesins, and actin involved in muscular contraction, in chains
up to 2000 amino acid residues long. A modified version
of Davydov’s original equation is used here, incorporating
changes suggested by A. Scott [4] and by Davydov and A.
Zolotariuk in [5,6]:

ih̄
dψn

dt
+ J (ψn−3 + ψn+3) − L(ψn−1 + ψn+1)

= χ (qn+3 − qn)ψn, (1)

M
d2qn

dt2
= V ′(qn+3 − qn) − V ′(qn − qn−3)

+χ (|ψn|2 − |ψn−3|2). (2)

This will be called the anharmonic Davydov-Scott system. The
anharmonic potential used here is the cubic

V (r) = K

2
r2 − γ

3
r3, (3)

and, in fact, it will be demonstrated that for the situation studied
herein, it is quite adequate to approximate with the harmonic
potential V (r) = K

2 r2, K = V ′′(0), as indeed was done by
Davydov originally. This leads to the “harmonic” version of
the second equation,

M
d2qn

dt2
= K(qn−3 − 2qn + qn+3) + χ (|ψn|2 − |ψn−3|2).

(4)
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Related exciton-phonon systems arise in other molecular
models, such as the system

ih̄
dψn

dt
+ J (ψn−1 + ψn+1) = χ (qn+1 − qn−1)ψn, (5)

M
d2qn

dt2
= V ′(qn+1 − qn) − V ′(qn − qn−1)

+χ (|ψn+1|2 − |ψn−1|2), (6)

used to model the conducting polymer polydiacetylene in
Ref. [7]. This differs in having two-sided (symmetrical) form
of the coupling, and only nearest-neighbor interactions, but as
should become clear below, the results herein adapt easily to
differences such as these.

We will consider in particular pulses in the exciton variables
ψn that are generated by initial excitation at one end of the
chain. It will be seen that the phenomena are well modeled
by a subsonic limit leading to a helically coupled discrete
nonlinear Schrödinger equation [HDNLS]:

i
dψn

dt
+ Ĵ (ψn−3 + ψn+3) − L̂(ψn−1 + ψn+1) + 2κ|ψn|2ψn

= 0. (7)

Further, an important part (but not all) of the pulse propagation
can be described with a new long-wave PDE approximation;
not the nonlinear Schrödinger [NLS] model previously pro-
posed by Davydov and considered in numerous subsequent
papers, but a third derivative NLS equation:

∂ψ

∂t
+ ∂3ψ

∂x3
+ 2iκ|ψ |2ψ = 0, (8)

also seen in related work of D. Pelinowsky and V. Rothos [8].
Section II introduces the various mathematical models

and their Hamiltonian structures, symmetries, and conserved
quantities, explaining the successive approximations involved.
Section III introduces the accurate, energy, and momentum
conserving numerical methods used; these are hopefully useful
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for a wide variety of similar Hamiltonian systems, due to
advantages over the symplectic methods often used for such
systems. Section IV presents numerical results, including
demonstration of the high degree of accuracy of the successive
model simplifications and the inapplicability (for the present
choices of initial data) of the NLS approximations used
in various previous studies. Section V gives an analytical
explanation for many of the phenomena observed and ends
by proposing some ideas for further study.

II. MODELING EXCITON PROPAGATION IN α-HELIX
PROTEIN AND OTHER POLYMERS

A. The anharmonic Davydov-Scott ODE system

The primary mathematical model used here is the above
anharmonic Davydov-Scott system of ODEs (1,2), which
modifies Davydov’s original ODE model of α-helix protein
by adopting a one-sided form for the exciton-phonon coupling
(proposed by A. Scott [4], based on the observations of V.
Kuprievich and V. Kudritskaya [9]) and using a nonlinear force
for the hydrogen bonds (as introduced by A. Davydov and A.
Zolotariuk in [6], and resembling the familiar FPU model).
The helical structure of this protein has roughly three amino
acid residues per twist, with hydrogen bonds connecting third-
nearest-neighbors into nearly straight spines: spatial proximity
leads to attractive exciton coupling along spines in addition
to repulsive coupling between neighbors along the molecular
backbone being the two dominant exciton interactions.

We briefly summarize the derivation of the above model:
see Refs. [3–5] for more details. First, one introduces the
Hamiltonian operator Ĥ = Ĥex + Ĥph + Ĥint, where:

(1) The exciton Hamiltonian operator,

Ĥex = E0â
†
nân − J (â†

n+3ân + ân+3â
†
n) + L(â†

n+1ân + ân+1â
†
n),

describes the amide-I vibrational modes in the residues, with
â
†
n the creation operator for the vibrational mode in residue

n, J the strength of the (attractive) dipole interaction between
residues that are adjacent along a spine, L the strength of
the (repulsive) dipole interaction between residues that are
adjacent along the molecular backbone, and E0 the total
vibrational energy.

(2) The phonon operator,

Ĥph =
∑

n

1

2M
p̂2

n + V (q̂n+3 − q̂n),

gives the energy due to displacement q̂n of residue n from rest
position in the direction of the axis of the helix (that is, along
spines), with p̂n the momentum operator canonically conjugate
to q̂n. (More precisely, the energy depends on stretching of the
hydrogen bonds.)

(3) The interaction Hamiltonian operator,

Ĥint = χ
∑

(q̂n+3 − q̂n)â†
nân,

characterizes the interaction between molecular excitations
and displacements, again manifested only through stretching
of the hydrogen bonds.

Then, seeking solutions of the form

|ψ〉 =
∑

n

ψn(t)eσ̂ (t)â†
n|0〉,

where

σ̂ (t) = i

h̄

∑
n

[E0t + pn(t)q̂n − qn(t)p̂n],

through minimization of 〈ψ |Ĥ|ψ〉 leads to the above anhar-
monic Davydov-Scott system of ordinary differential equa-
tions, with ψn(t) giving the probability of excitation at residue
n, and

qn(t) = 〈ψ |q̂n|ψ〉, pn(t) = 〈ψ |p̂n|ψ〉.
These ODEs have the Hamiltonian form

ih̄
dψn

dt
= ∂H

∂ψ∗
n

, ih̄
dψ∗

n

dt
= − ∂H

∂ψn

, (9)

dqn

dt
= ∂H

∂pn

,
dpn

dt
= − ∂H

∂qn

, (10)

H = Hex + Hph + Hint

=
∑

n

−J (ψ∗
nψn+3 + ψ∗

n+3ψn) + L(ψ∗
nψn+1 + ψ∗

n+1ψn)

+
∑

n

p2
n

2M
+ V (qn+3 − qn) + χ

∑
n

(qn+3 − qn)ψ∗
nψn.

(11)

Initial data. The initial data considered will be for the case
of excitation caused by the energy released in a single ATP
hydrolysis event: initial excitation at one residue n0, so that
ψn(0) = δn,n0 .

The most interesting phenomena will be seen to arise from
excitation at one end of the chain, i.e., n0 = 1, so that

ψ1(0) = 1, ψn(0) = 0 for n > 1. (12)

Note, however, that ATP hydrolysis can possibly excite two
vibrational modes [4,10] and some numerical studies [4,11]
have used the exciton variables to describe double excitations
with initial data ψ1(0) = ψ2(0) = 1, ψn(0) = 0 for n > 2.

An initially “at rest” chain is used: qn(0) = pn(0) = 0.

Parameter values. As the results herein are quite robust
under variations in the parameter values within the likely range
for α-helix protein, it is for the most part sufficient to use the
values reported in Refs. [4,11], which facilitates comparisons
to numerous other publications that use those values.

The exciton couplings are best expressed through the
frequencies

Ĵ = J/h̄ ≈ 1.47 THz, L̂ = J/h̄ ≈ 2.33 THz.

The linear stiffness of the hydrogen bond is K ≈ 13 N/m. The
effective residue mass M is less precisely known, due in part
to potential dependence on the particular sequence of amino
acids, but it is sufficient to use the typical value M ≈ 0.127 zg,
which leads to a typical phonon frequency

ω0 =
√

K/M ≈ 10.1 THz,

because it will be seen that the only importance here is that
this frequency is substantially larger than the above exciton
frequencies. This puts us in the subsonic regime: exciton pulses
travel at distinctly lower speeds than the phonons. As a further
consequence, it will be seen in Sec. IV that the subsonic limit
M → 0 (so also ω0 → ∞) gives the above HDNLS Eq. (7),
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and this approximation is seen in numerical studies to be highly
accurate for any physically relevant value of M .

Variation of the interaction coefficient χ has somewhat
more significant effects, and despite the precise computed
value of 34 pN cited by Ref. [11] and various subsequent
papers, there is still substantial uncertainty as to its value:
the best current estimate appears to be the broad range of
experimental values χ ≈ 35–62 pN, with computed values
subject to far greater uncertainty, even as to its sign [10].
Thus, the effect of varying this parameter is studied below:
fortunately, it is seen that the results herein depend only mildly
on this value, with even the linearization χ = 0 giving useful
information.

Boundary conditions. The boundary conditions at the ends
of the chain depend on if and how the helix is connected
to other parts of a molecule, but here the simplest, unbound
form is assumed: “out of bounds” values of ψn and of the
bond-stretchings rn := qn+3 − qn are effectively neglected in
the Hamiltonian, so for such index values,

ψn = 0, rn = 0. (13)

For constructing simplified PDE models via a long-wave
approximation, it is also convenient to consider an infinite
chain with n ∈ N and ψn → 0, rn → 0 as |n| → ∞.

B. Momenta (conserved quantities other than the Hamiltonian)

The equations above have a conserved exciton number E =∑
n ψ∗

nψn, with the initial data of interest here giving E =
1. (See, however, the note above about previous papers that
model double excitations and thus have E = 2.) This invariant
is associated via Noether’s Theorem with a linear symmetry
group action, the gauge symmetry

ψn → eisψn, ψ∗
n → e−isψ∗

n . (14)

There is also a conserved momentum Pσ on each spine,
Pσ = ∑

m p3m+σ , associated with spine translation symme-
tries q3m+σ → q3m+σ + sσ . However, linear invariants like
this are exactly conserved by almost any reasonable time
discretization (for example, any Runge-Kutta method), so no
more will be said about this.

C. Approximation by a helically coupled nonlinear
Schrödinger equation

The Davydov-Scott system has several disparate scales in
both space and time, and these can be used to derive simpler
approximations.

The first is that for physically relevant initial data, it will
be seen in the numerical results of Sec. IV that the bond-
stretchings rn are of small enough amplitude that the linearized
force −Kr is an adequate approximation, corresponding to
harmonic potential V (r) = K

2 r2.
Next is the subsonic limit approximation: the frequency ω0

is considerably higher than the exciton coupling frequencies
Ĵ and L̂, so that variation in the amplitude |ψn| is far slower
than that of the mechanical variables qn. Solving Eq. (4) by

variation of parameters gives

rn = qn+3 − qn

= − χ

K
|ψn|2 + oscillations of characteristic frequency ω0,

and it is plausible that the excitons respond primarily to the
slowly varying moving average part, which is given by setting
M = 0 in Eq. (4). Using this moving average approximation
rn ≈ − χ

K
|ψn|2 in the exciton Eq. (1) eliminates the mechanical

variables, reducing the model to the helically coupled discrete
nonlinear Schrödinger [HDNLS] Eq. (7), with

κ := χ2

2h̄K
≈ 0.45 – 1.4 THz.

This has Hamiltonian

H =
∑

n

−J (ψ∗
nψn+3 + ψ∗

n+3ψn) + L(ψ∗
nψn+1 + ψ∗

n+1ψn)

− κ(ψ∗
nψn)2. (15)

The validity of this approximation is demonstrated numerically
in Sec. IV.

III. ENERGY-MOMENTUM CONSERVING TIME
DISCRETIZATIONS

To study these systems and assess the adequacy of the above
HDNLS approximation, some numerical solutions should be
considered. For that, the necessary numerical methods will
now be described, and this is done for a general Hamiltonian
system,

dy
dt

= J∇yH(y) = J ∂H
∂y

(y), (16)

with J an antisymmetric matrix.
Notation. For the time step from t to t + δt and any scalar

variable y or vector y, we use the variable’s name alone to
denote its value at time t , t+ = t + δt , y+ = y(t+) = y(t +
δt), δy = y+ − y, and y = y+y+

2 .

A. Discrete gradient methods for exact energy conservation

Exact conservation of invariants has been seen to be a
desirable feature of numerical methods for Hamiltonian sys-
tems; see, for example, Ref. [12]. Following ideas originating
in the work of O. Gonzalez and J. Simo [13,14], the first
step is to ensure conservation of the Hamiltonian (energy)
by approximating such a system by a discrete Hamiltonian
system,

δy
δt

= J ∇̃yH(y,y+), (17)

using a suitable discrete gradient approximation,

∇̃yf (y,y+) ≈ ∇yf (y), (18)

that satisfies the discrete chain rule,

δf = (∇̃yf )(y,y+) · δy. (19)

This condition is assumed from now on, along with linearity
and the consistency condition

lim
y+→y

(∇̃yf )(y,y+) = ∇yf (y). (20)
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Component notation like

∇̃yf (y,y+) = 〈D̃y1f (y,y+), . . .〉
will occasionally be used.

Conservation of energy is easily shown for a discrete
gradient method by mimicking the familiar argument for (con-
tinuous) Hamiltonian systems: using in succession Eqs. (19),
(17), and the antisymmetry of J ,

δH
δt

= (∇̃yH)(y,y+) · δy
δt

= (∇̃yH)(y,y+) · J (∇̃yH)(y,y+) = 0.

B. Choosing a discrete gradient that also respects
quadratic momenta

Many such “energy conserving” discrete gradients can
be found, but conserving other invariants (here all called
momenta) requires an appropriate choice of the gradient
approximation. It will be seen that there is a natural limitation
to quadratic (including linear) momenta, but this is sufficient
for most systems of physical relevance. Here, the approach
introduced in Refs. [15,16] is followed, which is based on
three facts:

(1) There is a unique discrete gradient for functions of a
single variable y

∇̃yf (y,y+) :=
{

δf

δy
, y+ �= y

df

dy
(y), y+ = y

, (21)

following from the chain rule requirement Eq. (19). For
polynomials, this simplifies in a way that avoids the division
by zero issue, via

∇̃yy
p+1 = yn + yn−1y+ · · · + (y+)n. (22)

(2) There is a unique time-reversal symmetric discrete
gradient for a product of two variables,

δ(yjyk) = yj δyk + ykδyj , (23)

which corresponds to evaluating the true gradient at the
midpoint:

∇̃(yjyk)(y,y+) = ∇(yjyk)(y). (24)

In fact, this extends to a discrete product rule based on

δ(fg) = f δg + gδf. (25)

Thus, linear terms in the equations, corresponding to quadratic
terms in the Hamiltonian, are discretized exactly as for
the implicit midpoint rule, which is a popular momentum
conserving symplectic method for Hamiltonian systems. The
only differences are for nonlinearities, which for the systems
of interest herein are those coming from the Hamiltonian terms

χ (qn+3 − qn)ψ∗
nψn and

γ

3
(qn+3 − qn)3 for Eqs. (1) and (2); (26)

κ(ψ∗
nψn)2 for Eq. (7).

(3) Many physically relevant Hamiltonian systems with
conserved momenta have a natural form in which all the
momenta are quadratic (including linear) functions of the state

variables and are related through Noether’s theorem to a group
of affine symmetries of the Hamiltonian H, with invariance
of H manifested by the fact that it can be expressed as a
composition,

H(y) = Ĥ(Q), (27)

where each component Qm of the new state vector Q is a
quadratic,

Qm = 1

2

∑
j,k

Ajk
m yjyk +

∑
j

bj
myj , (28)

(with each Am := {Ajk
m } symmetric) that is invariant under the

symmetry group. For example, with the systems seen herein,
the invariant quadratics with which the Hamiltonian can be
expressed are the exciton products en,m = ψ∗

nψm and the bond-
stretchings rn.

In particular, the nonlinear terms seen here are

χrnen,n,
γ

3
r3
n, and κe2

n,n. (29)

The discrete Jacobian of this change of variables is given by
the true Jacobian evaluated at the midpoint:

D̃yQ(y,y+) = DyQ(y).

These facts and the above chain rule requirement naturally
lead to

∇̃yH =
∑
m

D̃mĤ(Q,Q+) ∇̃yQm(y,y+),

(30)
=

∑
m

D̃mĤ(Q,Q+) ∇yQm(y).

For the nonlinearities herein, the discrete gradients are now
determined by the factorizations in Eq. (29) through simple
forms,

D̃r (re) = e,D̃e(re) = r,
(31)

D̃e(e2) = 2e,D̃r (r3) = r2 + rr+ + (r+)2,

using Eq. (22) for the last.
Using such a discrete gradient, energy and momenta will

be conserved with any choice for the factors D̃mĤ(Q,Q+). In
practice, the above rules for single variable functions, products,
compositions, and linearity are generally enough to construct
a suitable discrete gradient for Ĥ.

Theorem 1. For a Hamiltonian system

dy
dt

= J∇yH(y), H(y) = Ĥ(Q),

as described above, and thus with a discrete gradient

∇̃yH =
∑
m

D̃mĤ(Q,Q+) ∇yQm(y),

solving numerically by the corresponding discrete gradient
method,

y+ − y
δt

= J
∑
m

D̃mĤ(Q,Q+) ∇yQm

(
y + y+

2

)
, (32)

conserves the Hamiltonian and all the quadratic momenta.
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Proof of Theorem 1. Energy conservation is already es-
tablished above, so consider conservation of an invariant Q.
Such quadratics are, in fact, invariant for any Hamiltonian
H = Ĥ(Q) constructed from the quadratic forms Qm as in
Eq. (27), including the alternative choices Hm := Qm, and
invariance of Q on each of those Hamiltonian flows means
that

0 = dQ

dt
= ∇Q · J∇Hm = ∇Q · J∇Qm, (33)

so that we have vanishing of the Poisson brackets

{Q,Qm}(y) := ∇Q(y) · J∇Qm(y) = 0. (34)

Mimicking Eq. (33) for the discrete flow and using the fact
from Eq. (24) that discrete gradients of quadratics are given
by the true gradients at the midpoint gives

δQ

δt
= ∇̃Q · J ∇̃H

= ∇Q(y) · J
∑
m

(D̃mĤ)∇Qm(y)

=
∑
m

[D̃mĤ(Q,Q+)]{Q,Qm}(y).

Evaluating Eq. (34) at y = y gives {Q,Qm}(y) = 0, so δQ = 0.

C. Practical implementation: An iterative solution method

The system of equations will be nonlinear (unless the
Hamiltonian system itself is linear), so we need an iterative
solution method. To exploit the quasilinearity of the system
to preserve linear stability properties and exact momentum
conservation without the cost of a full quasi-Newton method,
we proceed as follows: construct successive approximations
y(k) of y+ by solving

y(k) − y
δt

= J
∑
m

D̃mĤ(Q,Q(k−1)) ∇yQm(y(k)), (35)

where y(k) = (y + y(k))/2 and Q(k−1) = Q(y(k−1)), and initial-
ization can be with y(0) = y or some other suitable approxima-
tion of y+.

That is, the nonlinear part ∇̃QĤ is approximated using the
current best available approximation y(k−1) of y+, while the
linear terms are left in terms of the unknown y(k) to be solved
for. This equation is linear in the unknown y(k), making its
solution straightforward, particularly with the narrow coupling
bandwidth in the systems studied here. Much as above, we
have:

Theorem 2. Each iterate y(k) given by the above scheme
Eq. (35) conserves all quadratic first integrals that are con-
served by the original discrete gradient scheme Eq. (32).

The proof is as for Theorem 1, except that the Poisson
brackets are evaluated at (y + y(k))/2.

This approach to iterative solution also gives unconditional
linear stability, since as noted above, for a linear system it
is the same as the A-stable implicit midpoint method, and
indeed only a single iteration is needed in that case. Energy is,
of course, only conserved in the limit k → ∞, but iterating
until energy is accurate within machine rounding error is
typically practical: if this takes too many iterations, it is better

for overall accuracy to reduce the time step size δt to speed
the convergence.

D. Time discretization for the Davydov-Scott system

Applying the above results to the anharmonic Davydov-
Scott system is mostly a matter of separating linear terms from
nonlinear, applying the implicit midpoint rule to the former and
using Eq. (31) in Eq. (35) for the latter:

i
δψ (k)

n

δt
+ Ĵ

(
ψ

(k)
n−3 + ψ

(k)
n+3

) − L̂(ψn−1 + ψn+1)

= χ

h̄

(
q

(k−1)
n+3 − q (k−1)

n

)
ψ

(k)
n , (36)

M
δq(k)

n

δt
= p(k)

n , (37)

δp(k)
n

δt
= K

(
q

(k)
n+3 − q (k)

n

) + χ
(|ψ (k−1)

n |2 − |ψ (k−)
n−3 |2)

− γ

3

[(
q

(k−1)
n+3 − q(k−1)

n

)2 + (
q

(k−1)
n+3 − q(k−1)

n

)
× (

(q+)(k−1)
n+3 − (q+)(k−1)

n

)
+ (

(q+)(k−1)
n+3 − (q+)(k−1)

n

)2]
. (38)

E. Higher-order accuracy by symmetric step composition

The methods seen so far are only second-order accurate in
time. Fortunately, the method of symmetric step composition
(developed by M. Creutz, A. Gocksch, E. Forest, M. Suzuki,
and H. Yoshida [17–20] for use with symplectic methods, and
reviewed by E. Hairer, C. Lubich, and G. Wanner in Ref. [12])
gives a systematic way to construct methods of any higher
even order while preserving all the interesting properties:
conservation of the Hamiltonian and quadratic invariants,
time-reversal symmetry, and unconditional stability.

Numerical results are computed below by combining the
above discrete gradient method with the fourth-order accurate
Suzuki form of step composition [12], Example II.4.3, p. 45:
compose five discrete gradient steps of lengths ρjδ,

ρ1 = ρ2 = ρ4 = ρ5 = 1

4 − 3
√

4
≈ 0.41,

ρ3 = 1 − 4ρ1 ≈ −0.66.

F. Comparisons to other methods

The most commonly used conservative methods for Hamil-
tonian systems are symplectic methods, which can conserve
momenta but cannot in general conserve energy, as described
by a theorem of Z. Ge and J. Marsden [21]. In the present
situation, with stiff systems of ODEs and Hamiltonian not of
purely mechanical formH(q,p) = K(p) + U (q), the preferred
choices of symplectic method are the implicit midpoint
method, higher-order diagonally implicit Runge-Kutta [DIRK]
methods, and fully implicit Gaussian Runge-Kutta methods.

All DIRK symplectic methods are cognates of the energy-
momentum methods described here, given by applying the
same step composition procedures to the implicit midpoint
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method instead of to the discrete gradient method. It has been
illustrated in Refs. [15,16] that the basic discrete gradient
method can handle qualitative features of solutions better than
the midpoint method, though this has not been tested directly
when step composition is applied to each method.

Gaussian symplectic methods can be desirable when the
time step size is small enough to allow their solution by simple
fixed point iteration but are not cost effective for stiff systems,
where an unconditionally stable iterative method such as that
above is highly desirable.

IV. NUMERICAL RESULTS

As the initial excitation due to ATP hydrolysis will occur
at at most two residues, the initial state is very far from the
slowly varying form assumed in long-wave approximations by
PDEs. Thus, one question addressed here, as in earlier work,
such as Refs. [4,11], is whether solutions with such initial data
evolve into a form that can be well-approximated at later times
by a smooth function of position, leading to a hopefully more
tractable PDE model.

Time step choice. The choice of time steps here is always
cautiously constrained by

δt � min

(
1

2(Ĵ + L̂)
,

1

ω0

)
,

which satisfies the natural accuracy and stability requirements
for explicit methods, and for convergence of basic fixed point
iterative solution of the nonlinear schemes. However, it is
confirmed that accurate solutions, in the sense that all graphs
of exciton data are completely indistinguishable from results
with smaller time steps, are given for any time step size

δt � 1

2(Ĵ + L̂)
,

depending only on the time scale manifested in the exciton
evolution equation. Thus, the time discretization is effectively
handling any faster time scales in the mechanical variables in
the innocuous way that one hopes for stiff modes to be handled
by an unconditionally stable method, with no adverse effect on
the accuracy of the more slowly evolving (exciton) variables.

A. Numerical observations for the Davydov-Scott
and HDNLS systems

We first solve the anharmonic Davydov-Scott system
Eqs. (1) and (2) with 1000 residues, hydrogen bond nonlinear-
ity of cubic form Eq. (3) with γ = 4, and initial excitation at
one end as in Eq. (12). Figure 1 is for χ = 35, the minimum
of the likely range cited above, showing the exciton amplitude
|ψn| at times t = 20 and 40. It reveals a dominant leading
pulse of speed about 13.3 residues per unit time that is slowly
varying in n, and a secondary pulse of speed about 6.4 with no
slow spatial variation.

The time evolution is very similar in all cases, so it is
sufficient to compare at a single time t = 40 from now on.
Figure 2 repeats the forward part of the above data at that time,
and Fig. 3 is the same except for χ = 62, the other extreme of
the likely range of values. Although a significant quantitative
difference is seen, the qualitative description above still holds

FIG. 1. (Color online) |ψn| at times t = 20,40 for the anhar-
monic Davydov-Scott system with nonlinear coupling χ = 35, force
anharmonicity γ = 4, and impulsive initial data ψn(0) = δ1n as in
Eq. (12).

for the stronger nonlinearity, and it will be seen soon that other
key features are also unchanged.

For the sake of comparison to the somewhat different results
of Ref. [11], note that those differ in using the two-point initial
impulse form ψ1(0) = ψ2(0) = 1, ψn(0) = 0 for n > 2, χ =
40, N = 600, time units of 0.1 ps, and the symmetrical exciton-
coupling coupling form as seen in the polydiacetylene model
of Eqs. (5) and (6).

The slow variation of exciton amplitude suggests the
possibility of a long-wave PDE approximation for this part
of the solution, as proposed by Davydov and others. However,
slow variation is not seen in ψn as a whole, due to rapid
phase variation, and this is true even if one restricts to
individual spines. Instead, the phase advances by a factor of
approximately −i at each step along the chain and, thus, by a
factor of i at each step along any spine. This is best revealed
by studying wn := in−1ψn: the real and imaginary parts of this
are shown in Figs. 4 and 5 for the two cases above.

FIG. 2. |ψn| for the anharmonic Davydov-Scott system, as de-
scribed in the legend of Fig. 1, except at t = 40 only.
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FIG. 3. |ψn| at t = 40 for the anharmonic Davydov-Scott system
with stronger nonlinear coupling χ = 62; otherwise, as described in
the legend of Fig. 2.

Next, it can observed that the nonlinearity of the hydrogen
bonds is of little significance, due to the magnitude of rn

staying quite small: less than about 0.3. This is indicated by
Fig. 6 for the harmonic case γ = 0, with χ = 35.

However, this point is made more emphatically by consid-
ering the next level of approximation, by the subsonic limit
of HDNLS Eq. (7). Even for the harder case of χ = 62, the
exciton form is little changed, as seen in Fig. 7, and it is much
the same over the full range of likely χ values.

B. The linear approximation χ → 0

A final approximation worth considering is χ → 0, which
for either the Davydov-Scott or HDNLS systems gives a linear
equation for the excitons alone:

i
dψn

dt
+ Ĵ (ψn+3 + ψn−3) − L̂(ψn+1 + ψn−1) = 0. (39)

FIG. 4. (Color online) Real and imaginary parts of wn = in−1ψn

at t = 40 for the anharmonic Davydov-Scott system with parameters
as described in the legend of Fig. 2: χ = 35, γ = 4, impulsive initial
data.

FIG. 5. (Color online) Real and imaginary parts of wn = in−1ψn

for the anharmonic Davydov-Scott system with stronger nonlinear
coupling χ = 62; otherwise, as described in the legend of Fig. 4.

This will be the starting point for the analysis below, but first
it can be observed that at least some main qualitative features
of the above solutions are retained in this linear model, as seen
in Figs. 8 and 9.

The form of wn might now be recognized as resembling the
Airy function Ai, and this will be explained in the analysis of
the next section.

C. Brief remarks on other cases

Some brief observations for other choices of initial data and
parameter values.

(1) For an initial impulse at other locations, one has
exciton self-trapping, with most of the signal staying at
the initial location. There are weaker pulses propagating in
each direction, which are well explained by the analysis of
linearized equations given in the next section.

FIG. 6. |ψn| for the harmonic Davydov-Scott system (γ = 0);
otherwise, as described in the legend of Fig. 2. Note the close
similarity to that figure, showing that the added anharmonic force
term has little significance.
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FIG. 7. |ψn| for the harmonic Davydov-Scott system with
stronger nonlinear coupling χ = 62; otherwise, as described in the
legend of Fig. 6. Note the close similarity to Fig. 3, showing again
that an anharmonic correction to the force has little significance.

(2) For larger values of χ , about 100 and up, there is again
strong exciton self-trapping, with little signal propagation.

(3) For the double excitation initial data ψ1(0) = ψ2(0) = 1,
ψn(0) = 0 for n > 2 as considered in Ref. [11], or equivalently
with normalization ψ1(0) = ψ2(0) = 1/

√
2 and χ increased

by
√

2, the behavior is similar to that discussed here, though
with somewhat stronger nonlinear effects.

(4) For a straight-chain exciton-phonon model and/or with
symmetric exciton-phonon coupling, both seen in the polydi-
acetylene model of Eqs. (5) and (6), the main phenomena are
similar, though removing the third-nearest-neighbor coupling
changes the pulse velocity and eliminates the slower second
pulse.

V. ANALYSIS AND THE THIRD DERIVATIVE NLS
APPROXIMATION

Previous studies have proposed a PDE approximation based
on the assumption that ψn(t) varies slowly in n, leading to

FIG. 8. |ψn| at t = 40 for the linearization χ = 0. Note the broad
similarity to Fig. 2.

FIG. 9. wn = in−1ψn, which is now real-valued, for the lineariza-
tion χ = 0. Compare to both Fig. 4 and the Airy function.

PDEs related to the nonlinear Schrödinger equation and thus
to the study of solutions related to its traveling wave solutions
of hyperbolic secant form. However, it is seen above that for the
impulsive initial data considered herein, ψn does not become
slowly varying in phase. Instead, slow variation along the chain
is seen in the transformed quantity wn = in−1ψn, for which the
Davydov-Scott exciton evolution Eq. (2) becomes

dwn

dt
+ Ĵ (wn+3 − wn−3) + L̂(wn+1 − wn−1)

= −i
χ

h̄
(qn+3 − qn)wn, (40)

and HDNLS becomes

dwn

dt
+ Ĵ (wn+3 − wn−3) + L̂(wn+1 − wn−1)

= 2iκ|wn|2wn. (41)

Recalling that Ĵ ≈ 1.47 THz and L̂ = 2.33 THz, whereas κ ≈
0.45–1.4 THz, and that our initial data ensures |wn| � 1 with
far smaller values typical, it appears likely that the linearization

dwn

dt
+ Ĵ (wn+3 − wn−3) + L̂(wn+1 − wn−1) = 0 (42)

is a useful first approximation.
One initial observation is that for the initial data considered

herein, this has real valued solutions, fitting with the observed
phase behavior. Following the approach of D. Pelinowsky and
V. Rothos [8], we seek solutions of the form

ψn(t) = ei(kn−ωt)w(τ,z),
(43)

z = (n − vt)h,τ = εt,h,ε  1,

where the fast spatial and time scales are isolated in an
exponential factor, leaving a slowly varying envelope w(τ,z).
In the limit χ → 0, we first seek the simple traveling waves
of the linearization Eq. (39) given by constant w. This has
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dispersion relation

ω(k) = Ĵ cos(3k) − 2L̂ cos(k), (44)

and thus group velocity

v = dω

dk
= 6Ĵ sin(3k) − 2L̂ sin(k), (45)

with maximum

v = vmax = 6Ĵ + 2L̂ ≈ 13.48 (46)

occurring for k = −π/2 and ω = 0. This gives

ψn = (−i)n−1w, (47)

the same transformation suggested above based on numerical
observations. (There is a left-going counterpart, of course,
excluded by the initial data used here.)

One way to see this is that from initially impulsive initial
data with a wide range of wave numbers present, there is
a clustering of signals of various wave numbers at critical
numbers of group velocity, dv/dk = 0, in particular at k =
−π/2, which gives the maximum velocity. There are, in fact,
six critical numbers, with the other two that correspond to
right-going pulses forming a supplementary pair k′ ≈ 0.15π ,
k′′ = π − k′ with the same velocity v′ ≈ 6.60, fitting well
the velocity of about 6.4 observed for the second slower
pulse above. This double root allows pulses with spatial
dependence given by superposition of the two exponential
solutions, with forms that alternate between cos(β ′n) and
i sin(β ′n) at successive nodes, which explains the break-down
of slow amplitude variation seen for that second pulse.

Returning to the Davydov-Scott system, we now seek
solutions similar to this. Nonlinearity requires an amplitude
scaling, and this is incorporated along with an approximately
traveling wave form using the above group velocity in the
transformation

ψn(t) = in−1wn(t) ≈ √
εinu(z,τ ), (48)

where z = (n − vt)h, v = 6Ĵ + 2L̂, τ = εt , ε = (1/3)ah3,
a = 27Ĵ + L̂.

This gives

uτ + uzzz = iχ̂qzu, (49)

and in the subsonic limit of HDNLS,

uτ + uzzz + iχ̂ |u|2u = 0, (50)

which is sometimes called the third derivative nonlinear
Schrödinger equation. For either of these equations, the
linearization is the Airy PDE

uτ + uzzz = 0, (51)

and the impulsive initial conditions considered here can be
associated with its fundamental solution

u(z,τ ) = 1

(3τ )(1/3)
Ai

(
z

(3τ )(1/3)

)
. (52)

Converting back gives approximate solutions

ψn ≈ in−1

t1/3
Ai

(
n − vt

[(27Ĵ + L̂)t]1/3

)
, v = 6Ĵ + 2L̂. (53)

Proposals for further analysis. For the related case of
discrete NLS equations of the form

i
dψn

dt
+ ψn−1 + ψn+1 + χf (ψn−1,ψn,ψn+1), (54)

with cubic nonlinearities f having the gauge symmetry
Eq. (14), Pelinowsky and Rothos [8] showed that solutions of
the nonlinear equation for small χ bifurcate from solutions
of the linearization at certain points, in particular the one
k = −π/2, ω = 0 seen above. It seems likely that a similar
analysis would apply here. Beyond that, what the numerical
results suggest, and which should be analyzed further, is
that the nonlinearity provides some “dispersion management,”
preventing the leading pulse from spreading as fast as in the
linearization, and making it more dominant compared to the
following oscillation train.

VI. CONCLUSIONS

(1) The sustained traveling exciton pulses seen in Davydov-
style exciton-phonon models of energy propagation in α-helix
protein are well approximated by the subsonic, small mass
approximation, giving a variant of the discrete NLS equation.

(2) As noted by other authors, the main part of the pulse has
magnitude |ψn| that varies slowly, suggesting a long-wave
PDE approximation. However, the phase of the ψn varies
rapidly in index n, by about a quarter turn at each step, and
thus the slow spatial variation is instead in wn = in−1ψn.
This leads to a PDE approximation by the third derivative
nonlinear Schrödinger equation wτ + wzzz = i|w|2w, which
indeed gives solutions fitting well to the fastest moving part of
the solutions.

(3) Linearization of this to the Airy PDE wτ + wzzz = 0
also gives a good qualitative fit to many features such as pulse
speed, with the main nonlinear deviation being in the most
intense front-most part of the pulse.

(4) Analysis of the linearized discrete system also explains
a good part of the observed behavior: it is not nearly as accurate
as the above nonlinear PDE in describing the leading part of
the pulse but explains the second, slower pulse for which the
PDE is not applicable.

(5) Evidence of nonlinear “self-trapping” effects are seen,
in that the leading hump of the pulse remains stronger and
narrower, as time increases, than those of the linearization,
supporting more sustained propagation than a linear model
would predict.

(6) The higher-order exactly energy-momentum conserving
time-discretization method used is seen to handle well the
stiffness that can arise in such systems, making it a good
candidate for similar problems, including spatial discretization
of various stiff nonlinear dispersive PDEs.
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