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Abstract

Wave self-focusing in molecular systems subject to thermal effects, such as thin molecular films and long biomolecules, can be modeled by
stochastic versions of the discrete self-trapping equation of Eilbeck et al. [J.C. Eilbeck, P.S. Lomdahl, A.C. Scott, The discrete self-trapping
equation, Physica D 16 (1985) 318–338], which gives as a continuum limit approximation the stochastic nonlinear Schrödinger equation (SNLS):
NLS plus a noise term in the form of a random, time dependent potential.

Previous studies directed at such SNLS approximations have indicated that the self-focusing of wave energy to highly localized states can be
inhibited by phase noise (modeling thermal effects) and can be restored by phase damping (modeling heat radiation).

Here, the discrete models are studied directly, with some discussion of the validity and limitations of continuum approximations. Also, as
has been noted by Bang et al. [O. Bang, P.L. Christiansen, F. If, K.Ø. Rasmussen, Yu.B. Gaididei, Temperature effects in a nonlinear model of
monolayer Scheibe aggregates, Phys. Rev. E 49 (1994) 4627–4636], omission of damping produces highly unphysical results.

Numerical results are presented here for the first time for discrete models that include the highly nonlinear damping term, and a new numerical
method is introduced for this purpose.

The results in general confirm previous conjectures and observations that noise can inhibit energy self-trapping (the discrete counterpart of
NLS self-focusing blow-up), while damping can reverse this and restore self-trapping. Damping is also shown to strongly stabilize the self-trapped
states of the discrete models. It appears that the previously noted inhibition of nonlinear wave phenomena by noise is an artifact of models that
includes the effects of heat input, but not of heat loss.
c© 2006 Elsevier B.V. All rights reserved.
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1. Introduction

Combinations of mildly nonlinear wave motion in molecular
structures with localized excitation modes can lead to intense
localization or self-trapping of wave energy onto one or a
few molecular subgroups. The relevant mathematical modeling
started with Davydov’s soliton theory of exciton waves in
protein molecules interacting with localized phonons, localized
vibrations at CO bonds, where a continuum limit gave
the integrable one dimensional focusing cubic nonlinear
Schrödinger (NLS) equation [9,11,10]. The discrete self-
trapping phenomenon was discovered and named by Scott [24]
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along with Eilbeck and Lomdahl [16,17], who extended
Davydov’s work to vibrations in other molecular systems
such as crystalline acetanilide and smaller molecules such as
benzene; see also [19,2]. Approximations that eliminate the
fastest internal vibration modes again lead to systems that are
discrete counterparts of the 1D focusing cubic NLS, or coupled
systems of such.

Two dimensional molecular structures such as Scheibe
aggregates [4] lead to similar mathematical models related to
the 2D focusing cubic NLS [21,3]. In the 2D discrete NLS, a
version of discrete self-trapping is also seen, in the sense of the
formation of standing trapped narrow spikes, as has been shown
by Christiansen et al. [7,6].

Bang et al. [1] added stochastic terms to modeling effects
such as random spatial variations in the medium (fixed pattern
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noise: time independent) and thermal agitation (space–time
noise). Nonlinear optics has also produced continuum or semi-
discrete examples including intense CW lasers and multi-cored
optical fibers with random imperfections in the medium or in
the strength of the coupling between signals in the different
cores or different propagation modes.

However, excitation of vibrational modes by noise without
balancing losses can lead to an unphysical degree of spatial
disorder or thermal runaway, impeding wave propagation in
contradiction to experimental observations [1]. Even worse,
the obvious continuum limits give stochastic NLS (SNLS)
equations which seem to be well-posed only when the noise
has adequate spatial correlation [12], which is not necessarily
consistent with the length scales in the molecular systems. In
other words, noise can destroy the spatial smoothness needed
to justify a continuum limit.

More realistic modeling thus requires a mechanism for
loss of phonon energy, such as linear damping of those
phonon vibrations, in order to allow the attainment of thermal
equilibrium. This leads to the damped stochastic discrete
nonlinear Schrödinger equation (DSDNLS)

i
dΨn

dt
+

∑
m

JnmΨm + |Ψn|
2σΨn + γΨnẆn

− λΨn
d
dt
(|Ψn(t)|

2σ ) = 0, (1)

with σ = 1 giving the cubic case typical in physical
applications, as derived and studied in [8]. Here the Ẇn(t;ω)
are noise processes with ω labeling realizations, the dot
denoting formal time derivatives; the physical meanings of
other variables and parameters are explained in the next section.

Spatially discrete models such as this are the main object of
this paper, but possible continuum limits will also be discussed,
mostly in Section 6: the most obvious is the damped stochastic
nonlinear Schrödinger equation (DSNLS)

i
∂ψ

∂t
+1ψ + |ψ |

2σψ + γψẇ − λψ
∂(|ψ |

2σ )

∂t
= 0, (2)

also introduced in [8].
The next section surveys the background for this study:

physical origins, mathematical modeling, and some basic
properties, and then Section 3 summarizes previous numerical
results and establishes conjectures to be studied here. Section 4
describes the numerical methods used, and Section 5 presents
the main numerical results, using the surrogate case of a one
dimensional structure with quintic nonlinearity σ = 2. The
continuum approximation is discussed in Section 6, with some
suggestions as to how to overcome problems with previous
approaches, followed by conclusions and a discussion of
directions for further work in Section 7.

2. Mathematical modeling

We review here the mathematical modeling of a two
dimensional example from chemistry and biochemistry,
following [4,22,3,1,8]. This is a model of Scheibe aggregates,
a class of highly ordered thin films of molecules coupled by
dipole interactions predominantly within a plane: an essentially
two dimensional wave medium. However much of the modeling
is also relevant to a variety of other molecular systems such
as the essentially one dimensional protein models discussed
above; see [10,24,16,17] and references therein.

2.1. Scheibe aggregates: Highly ordered thin molecular films

Scheibe aggregates are highly regular arrangements of
molecules in thin films, sometimes a single molecule thick,
or with only weak interaction between neighboring layers of
molecules. These structures have important biological roles
such as in photo-chemical reactions, and one laboratory
example is provided by the cyanine dye Scheibe aggregates first
studied by Bücher, Kuhn, Möbius et al. [4,22]. They establish
an arrangement of the molecules in a single layer “brick-wall”
lattice, with the dominant dipole interactions being those with
six nearest neighboring molecules, arranged in a hexagonal
array of approximately dihedral D2 symmetry (half-turns and
reflection in two perpendicular axes).

The molecules also have internal excitation states, which are
coupled to the excitons and are also subject to thermal effects:
random external forces due to collisions with molecules from
outside the thin film.

2.2. An exciton–phonon system with phase noise and damping

Such thin films can be modeled as an exciton–phonon
system with noise and damping acting on the internal modes
as described by Bang et al. in [1], which adds damping to
the purely quantum mechanical modeling of Bartnick and
Tuszyński [3]:

ih̄
dΨn

dt
+

∑
m 6=n

JnmΨm + χunΨn = 0 (3)

M
d2un

dt2 + Mλ
dun

dt
+ MΩ2

0 un − χ |Ψn|
2

= γ Ḃn (4)

where
Ψn(t) is the exciton wave at molecule (node) n,
un(t) is the elastic degree of freedom of the molecule n,
Jnm is the dipole–dipole interaction energy,
χ is the exciton–phonon coupling constant,
γ Ḃn is a random external force acting on molecule n, Ḃn

the formal time derivatives of independent Wiener processes at
each n,
γ is the strength of the random external forces,
λ is the damping coefficient,
M is the molecular mass, and
Ω0 is the Einstein frequency of each oscillator.
These equations conserve the exciton energyN =

∑
n |Ψn|

2

under the Stratonovic interpretation of the stochastic term as
discussed below, at least on a fully infinite lattice or with
suitable boundary conditions.

The form of Eqs. (3) and (4) also covers a wide range of
other applications such as the one dimensional case of protein
molecule models mentioned above: the indices will often be
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taken below to simply enumerate a collection of nodes, with
details such as spatial relationships between nodes encoded in
the coupling terms Jnm .

For further mathematical flexibility, the coupling term will
henceforth be written as a general power law χ |Ψn|

2σ , though
all physical models we know of have the cubic nonlinearity
σ = 1. The underlying spatial dimension will be denoted by
D, so D = 2 in the model above.

Without noise and damping, the system in (3) and (4) is
Hamiltonian, giving a second conserved quantity

H = −

∑
n,m 6=n

JnmΨnΨm −
2χ

1 + σ

∑
n

un|Ψn|
2σ

+
M

2

∑
n
(u̇2

n + Ω2
0 u2

n).

2.3. Eliminating the phonon terms un

The phonon terms un can be eliminated using the variation
of parameters formula which gives an integral expression for
un in terms of Ψn [8]. To eliminate the resulting time integral
and initial data transients, one must restrict to times λt � 1
and make the slowly varying envelope approximation: that the
exciton energy |Ψn(t)|2 is slowly varying relative to the phonon
frequency Ω0. Thus, the presence of damping (λ > 0) is
essential.

The reduced system is

0 = ih̄
dΨn

dt
+

∑
m 6=n

JnmΨm + V |Ψn|
2σΨn

+
γχ

Mh̄Ω
ΨnẆn −

λV

Ω2
0

d
dt

[|Ψn(t)|
2σ

]Ψn, (5)

where V = χ2/MΩ2
0 ,Ω

2
= Ω2

0 − (λ/2)2, and

Ẇn = λ

∫ t

0
e−λs/2 sin(Ωs)Ḃn(t − s)ds. (6)

Note that the new noise processes Ẇn are temporally correlated.

2.4. Rephrasing as a damped stochastic discrete nonlinear
Schrödinger equation

If the coupling Jnm is homogeneous, in that the quantities

Jnn := −

∑
m 6=n

Jnm

have a common value J0, then the Ψn have a common average
phase evolution et J0/h̄ . This can be removed by adding Jnn
to each coupling sum, and with some rescalings including
γχ/(M h̄2 Ω) → γ , λ/(h̄Ω2

0 ) → λ, one gets the damped
stochastic discrete nonlinear Schrödinger equation (1).

Even if the Jnn are not all equal, one can use their average
value J̄ as the phase shift, and absorb the differences Jnn − J̄
into the noise coefficients as fixed pattern noise.

The exciton energy N =
∑

n |Ψn|
2 is still conserved, and

without noise or damping the system still has a conserved
Hamiltonian,

H = −

∑
n,m

JnmΨnΨm −
1

1 + σ

∑
n

|Ψn|
2(1+σ).

Simple examples are uniform nearest neighbor interaction
on a line (1D) or square lattice (2D) of spacing l with all the
non-zero Jnm having the same value, J/ l2. The coupling term
is then J times the standard three point second derivative (1D)
or five point discrete Laplacian (2D), and the equation is a
discretization of the damped stochastic nonlinear Schrödinger
equation (2), with

Ẇn =

∫ t

0
e−λΩ2

0 s/2 sin(Ωs)Ḃn(t − s)ds. (7)

As Ω0 (like the unrescaled λ in Eq. (6)) comes from the fast
time scale that has been otherwise eliminated, the correlation
time of this new noise term is typically very short. Thus we use
the approximation that the new noise term is still temporally
uncorrelated.

Also, the Hamiltonian for the case of no noise or damping
is the natural discretization using simple forward difference
quotients for the gradient terms of the Hamiltonian for NLS,

H =

∫
‖∇ψ‖

2
−

1
1 + σ

|ψ |
2(1+σ) dx.

It can be useful in places to think of the ODE systems
in relation to the familiar NLS equation, but a more careful
consideration of continuum limit approximations is needed, as
discussed in Section 6.

2.5. Removing the extra time derivative term, and Stratonovic
differential form

For some purposes, the time derivative should be eliminated
from the damping term. Also, the rigorous mathematical
formulation must be in terms of stochastic integrals and
differentials, and in order to conserve the exciton energy
N , products involving stochastic terms must be interpreted
in the Stratonovic sense. (Loosely, the Stratonovic integral
is defined as the limit of mid-point rule (or trapezoid rule)
approximations, whereas the Itô integral is the limit of left-
hand end point Riemann sums: see [23] for details.) Solving
for dΨn/dt , substituting into the other time derivative leads to
the stochastic differential form

dΨn = i

[∑
m

JnmΨm + |Ψn|
2σΨn

+ 2λσΨn|Ψn|
2(σ−1)Im

(
Ψn

∑
m

JnmΨm

)]
dt

+ iγΨn ◦ dWn (8)

with ◦d denoting the Stratonovic differential.

2.5.1. Why not convert to the Itô integral form?
Any system of stochastic ODE’s in terms of the Stratonovic

integral can be replaced by an equivalent system which gives
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the same solution under the Itô interpretation, by replacing
the above Stratonovic differential by the corresponding Itô
differential plus a correction term [23], and the Itô form is far
more amenable to analysis such as existence and uniqueness
proofs. In the current case, this gives

dΨn = [as before] + iγΨndWn −
λ2

2
Ψn . (9)

However, this form is undesirable for current purposes,
particularly numerical simulations. The new term adds rapid
exponential decay, destroying the manifestly conservative form.
This reflects the fact that the Itô differential term itself generates
rapid exponential growth of individual realizations, related to
the fact that the ensemble average of Itô solutions satisfies the
underlying noise-free equation, and so conserves the exciton
energy N .

This would prevent the use of time discretizations that
inherently conserve exciton energy N ; such conservative
discretizations are used here for the Stratonovic form.

Also, the Itô form has no continuum limit with spatially
uncorrelated noise. This might reflect the conjectured lack of
existence of solutions to such continuum limits, even when the
limit formally exists for the Stratonovic form.

3. Heuristics, conjectures and prior numerical results on
SNLS blow-up and SDNLS self-trapping

Though our primary subject is the discrete model above with
both damping and stochastic terms, far less is known for this
model than for the continuum limit PDE approximation, so it
is convenient to start with the better understood PDE, SNLS,
and then seek heuristic arguments and conjectures on how these
results might translate to the discrete model, to guide numerical
experiments.

3.1. Wave self-focusing and blow-up in SNLS

In the continuum model of 2D cubic or 1D quintic
NLS, self-focusing can lead to the formation of single point
singularities, sometimes called blow-up. The proof of this for
the NLS is based on a variance argument, which has been
extended to various cases of stochastic NLS by Gaididei and
Christiansen [20] and DeBussche and Di Menza [15], and in
more developed form by Fannjiang [18] and de Bouard and
DeBussche [13]. All require noise that is sufficiently correlated
in space and uncorrelated in time: the former condition is
arguably analogous to our situation of a discrete system, but the
latter is not exactly true with our model. The relevant results, for
critical nonlinearity σD = 2, can be summarized as follows.

For data of sufficiently rapid decay at infinity, the pulse
width can be measured by its spatial variance

V (t) =

∫
|ψ |

2
‖x‖

2 dx.

The ensemble average 〈V 〉 is related to the ensemble average
〈H〉 of the Hamiltonian by

d2
〈V 〉

dt2 = 8〈H〉, (10)
and in turn noise modifies conservation of the Hamiltonian to

d〈H〉

dt
= R :=

1
2

∫
Φ(p)‖p‖

2dp, (11)

where Φ(p) is the power spectral density of the noise
distribution.

For spatially uncorrelated noise, Φ(p) is a positive constant,
so R = ∞: the formulas break down, but strongly suggest that
SNLS has no solutions, at least in Sobolev space H1.

Without noise, R = 0, 〈V 〉 = V evolves quadratically,
and H < 0 is a sufficient condition for finite time singularity
formation, as otherwise, V would become negative. Noise
changes the evolution to the cubic

〈V 〉 = 〈V 〉(0)+ bt + 4〈H〉(0)t2
+ 2R/3t3. (12)

Clearly for H(0) < 0, weak enough noise still leads to a
prediction of negative 〈V 〉 by some positive time t0, so with
positive probability, solutions must cease to exist before that
time. However, for noise having R > −27〈V 〉(0)/(320〈H〉(0)),
the variance stays positive, so that this argument no longer
guarantees blow-up. This raises the possibility that sufficiently
strong noise restores global existence. For noise of correlation
length scale l,

R = O

(
1

l2+D

)
(13)

which suggests that both increasing the noise strength and
decreasing its correlation length increase the possibility that
the noise can prevent blow-up in SNLS that would occur in the
noiseless NLS with the same initial data.

These indications should not be overinterpreted: blow-
up can occur with positive variance, and indeed simulations
without noise typically show blow-up occurring while the
variance is still clearly positive. Also, it is shown in [13] for the
supercritical case σD > 2 under mild technical conditions that
blow-up occurs with positive probability for any initial data and
level of noise, though that leaves open the intuitive possibility
that for initial data not giving blow-up in the noise-free case,
adding noise might produce only a low probability of blow-up.

Such formulas have not yet been extended to account
for damping, but as seen below, there are hints of damping
contributing an additional negative term in dH/dt , in some
sense favoring blow-up.

3.2. Exciton energy self-trapping in the discrete system

With no noise or damping, numerical simulations of discrete
counterparts of the NLS equation show phenomena analogous
to blow-up, which has been name discrete self-trapping. That
is, solutions can have the exciton energy concentrate until a
substantial fraction of the total is at a single node (molecule),
and then stay trapped in a solution that seems to oscillate around
a stable steady state. This was first described by Davydov [10]
in models of protein molecules, and further analyzed and
simulated by Eilbeck, Lomdahl and Scott [24,16,17].

No analogues of the above formulas and results are known
for discrete NLS equations, even without noise, but for a
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heuristic comparison, note that a discrete SNLS with spatially
uncorrelated noise on a grid of spacing l effectively has noise
correlation length scale l so that Eqs. (12) and (13) hint that both
increasing the noise strength and refining the mesh spacing in a
discretization of SNLS could favor inhibition of self-trapping.

For the discrete systems with noise, no formulas are known
for the evolution of ensemble averages considered above. The
closest analogue to the results for SNLS is that from Eq. (1) the
Hamiltonian evolution for individual realizations satisfies

dH
dt

=

∑
n

{
Ẇn

d
dt
(|Ψn|

2)− λ

[
d
dt
(|Ψn|

2σ )

]2
}
. (14)

This no longer makes it clear that noise causes the previously
noted linear increase in 〈H〉, or corresponding growth in
beam spatial variance or inhibition of wave collapse, but
all these phenomena are still seen in numerical studies of
discrete systems with spatially uncorrelated noise, such as in
Section 5. This is to be expected, since those discrete systems
are effectively discretizations of SNLS with noise of spatial
correlation on a length scale comparable to the mesh spacing
of the discretization.

3.3. Prior numerical results

The full 2D stochastic NLS equation with spatially
uncorrelated noise has been simulated by Bang et al. [1], and the
1D quintic case of the stochastic NLS equation by DeBussche
and Di Menza [14,15]. In each case it is observed that spatially
uncorrelated noise can prevent blow-up.

In [1] it is concluded that this noise effect is too strong
to match physical experiments: noise levels so low as to
correspond to temperatures of a few kelvins are needed
to reproduce behavior seen in experiments at far higher
temperatures. The likely cause is “thermal runaway” due to the
absence of a mechanism for “heat loss”, such as the damping
term used here.

In [15] a large number of simulations of SNLS on a fixed
spatial grid all have the maximum amplitude reach at least
three times its initial value at some time, and this is interpreted
as showing that spatially correlated noise (as is effectively
imposed by a fixed spatial discretization) can only delay blow-
up in critical SNLS with initially negative Hamiltonian, but
cannot prevent blow-up. However Fig. 15 of that paper shows a
case where a finer fixed spatial grid shows inhibition of blow-
up, with the maximum amplitude never reaching twice its initial
value and then decaying at later times: similar to Fig. 5.

The spatial structure seen in Fig. 4 suggests another
possible interpretation of the growth of the maximum amplitude
observed in [15]: that noise causes many brief, narrow spikes,
and over long enough time almost inevitably at least one
of these will have three or more times the initial maximum
amplitude, but these noise induced spikes are typically far
narrower than a developing self-focusing blow-up, and thus
are transient, not continuing on to blow-up. Indeed, in our
simulations, such spikes are typically only one or a few nodes
wide, narrower that the spatial discretization can accurately
resolve in a solution of the SNLS, so that they are phenomena
only of the discrete system, not of the PDE.

A more reliable criterion for numerical detection of NLS
blow-up is that some substantial fraction of the exciton energy
is concentrated in a very small part of the spatial domain. In
terms of discrete NLS, self-trapping is indicated by a substantial
fraction of the exciton energy occurring at a single node. In the
simulations below, self-trapping is manifested by a majority of
all exciton energy reaching and then staying at a single node,
with this trapping persisting for considerably longer than the
rise time of the self-trapping.

As to damping effects, Eq. (14) indicates that damping has
the opposite effect to noise, causing reduction ofH. Combined
with the expectation that (10) still holds approximately for
discretizations of SNLS, this suggests the possible return of
self-trapping.

Christiansen et al. [8] have done the only simulations
known to us of the model with damping in Eq. (2). They do
this with further approximation by a single stochastic ODE,
first imposing radially symmetry and then using the method
of collective coordinates. Such modeling has led to some
analytical results on self-focusing in the NLS equation, but
with the stochastic terms, it still requires study primarily by
simulation.

They start with simulations without damping, corroborating
the above described observations about inhibition of blow-up
by sufficiently strong noise, leading instead to dispersion of
initially concentrated wave energy. With damping added, they
observe that the effect of noise can be reversed, leading to blow-
up where with noise alone it would not occur, as suggested by
Eq. (14). Again there appears to be a threshold damping level
for this to occur with given initial data and noise level.

With this survey done, we are ready to consider new
numerical methods and results of simulations based on Eq. (1).

4. Numerical method: A variant of the iterative trapezoid
method of Chang and Xu

With noise but no damping, and with homogeneous coupling
and periodic boundary conditions, a Fourier split-step method
could be used, as was done by Bang et al. [1] for SNLS.

Instead, an implicit time discretization based on fixed point
iterative solution of the trapezoid rule is used, similar to one
described and analyzed by Chang and Xu [5]. It has several
virtues:

• it satisfies the needed Stratonovic interpretation (no need for
the Itô correction term),

• it conserves the exciton energy N , and
• with no noise or damping, it conserves the HamiltonianH.

The main disadvantage is the need for iterative solution (so
that conservation is no longer exact, but still highly accurate).
Fortunately, most solutions of interest here develop spatial
features at the single node spacing level, due to either self-
trapping or the spatially uncorrelated noise, producing maximal
spatial frequencies that generate the need to resolve the “worst-
case” time scales indicated by the leading order term: we must
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expect to need δt = O(1/J ). This step size ensures that
even the simplest iterative methods will converge; Newton-style
iterations and the updating of the linearization of the nonlinear
terms are not needed.

4.1. A modified trapezoid method for conservation of N and
sometimesH

Writing Ψ j
n for the approximations of Ψn(t j ), δt = t j+1

−

t j , and δW j
n /δt for the approximation of Ẇn , constant on

t j
≤ t ≤ t j+1, the scheme used for the quintic case is

i
Ψ j+1

n − Ψ j
n

δt
+

∑
m

Jnm
Ψ j

m + Ψ j+1
m

2

+

[
|Ψ j

n |
4
+ |Ψ j

n |
2
|Ψ j+1

n |
2
+ |Ψ j+1

n |
4

3

+ γ
δW j

n

δt
+ λIm

(
Ψ j

n

∑
m

JnmΨ j
m + Ψ j+1

n

∑
m

JnmΨ j+1
m

)]

×
Ψ j

n + Ψ j+1
n

2
= 0. (15)

The quintic nonlinearity needs this special form to conserve the
Hamiltonian in the absence of noise and damping; for the cubic
case, the familiar trapezoid form (|Ψ j

n |
2
+ |Ψ j+1

n |
2)/2 suffices.

For the case studied so far of totally uncorrelated noise,
the noise components δW j

n are independent with normal
distribution of mean zero, standard deviation

√
δt . Thus

δW j
n /δt has standard deviation 1/

√
δt , a hint at the time step

restrictions needed to resolve noise effects accurately.

4.2. Linearly implicit iterative approximation of the trapezoid
method, conserving N

The coupled nonlinear equations given by the trapezoid
method can be solved by a linearly implicit fixed point iteration,
in which certain occurrences of the unknown Ψ j+1

n are replaced
by the approximation from the latest iteration, producing
simultaneous linear equations for the new iterate.

Writing Ψ j+1,k
n for the kth iterate, the initial approximation

used for the new time step is Ψ j+1,0
n = Ψn, j , and the

components Ψ j+1,k
n of each subsequent iterate are found by

solving

i
Ψ j+1,k

n − Ψ j
n

δt
+

∑
m

Jnm
Ψ j

m + Ψ j+1,k
m

2

+

[
|Ψ j

n |
4
+ |Ψ j

n |
2
|Ψ j+1,k−1

n |
2
+ |Ψ j+1,k−1

n |
4

3
+ γ

δW j
n

δt

+ λIm

(
Ψ j

n

∑
m

JnmΨ j
m + Ψ j+1,k−1

n

∑
m

JnmΨ j+1,k−1
m

)]

×
Ψ j

n + Ψ j+1,k
n

2
= 0. (16)

Note the use of the new unknown iterate in the final factor
of the nonlinear term rather than the previous iterate as would
normally be done to get a linear iterative scheme: this change
is what guarantees exact conservation of the exciton energy at
each iteration while still giving linear equations.

Experiment and heuristic error analysis show that only three
iterations are needed in this scheme; when convergence to
the exact solution of the implicit trapezoid scheme is too
slow for three steps to suffice, this indicates that implicit
trapezoid solution is itself insufficiently accurate, so that time
step reduction is needed rather than more iterations.

The iterative approximation no longer conserves the
Hamiltonian H exactly, but with these three iterations the error
in H is already far less than the overall second order accuracy
suggests. This is presumably because this error comes only
from the difference between the third iterate and the exact
solution of the implicit trapezoid scheme, which is third order:
O(δt3).

4.3. Time step size choice and accuracy checking

As already noted above, we expect to need time steps no
larger that O(J−1). However, even more is probably needed.
The local truncation error (per unit time) of the trapezoid
method is ‖ut t tδt2/12‖ and considering just the coupling term
dun/dt = iJ1un +· · · (with1 the second difference operator),

d3un/dt3
= −iJ 31

3
un + · · ·. Thus we must expect ‖ut t t‖

of magnitude up to ‖1‖
3
‖u‖J 3 and relative errors of up to

(4J )3δt2/12 = 16J 3δt2/3, so that for error tolerance ε we
expect to need δt /

√
3ε/J 3/4, which is O(J−3/2) rather than

O(J−1).
For a modest error tolerance ε = 10−2 and J = 100 as used

below, this suggests δt /
√
ε/J 3 = 10−4.

Accuracy is tested in practice by repeated halving of step
size. In order to do this while maintaining a consistent noise
realization, noise is generated on a time scale δnoise finer than is
expected to be needed, and then the time steps tried are of the
form 2pδnoise. Due to the above estimate, our computations use
δnoise = 10−5, with the values of δt needed ranging from 10−5

to 8 × 10−5.

5. Numerical results

For computational efficiency, simulations of the damped
stochastic discrete NLS equation (1) have been done with
a single computational space dimension, using two different
approaches to this reduction of dimension.

The main studies are done for the one dimensional quintic
case D = 1, σ = 2, with this somewhat unnatural nonlinearity
power used for the sake of remaining in the critical case for
collapse in NLS. Homogeneous nearest neighbor coupling is
used. Nearest neighbor coupling makes sense in the physical
models, since dipole interactions are very short range. It also
makes little sense to use higher order spatial discretizations
of stochastic NLS equations, because the noise eliminates the
higher order smoothness needed to make such discretizations
more accurate. This case, without damping, was also studied by
DeBussche and Di Menza [14,15], as discussed in Section 3.2.

The second reduction used is imposing radial symmetry on
the two dimension cubic NLS (D = 2, σ = 1), and then again
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Fig. 1. Exciton energy distribution for 1D quintic, no noise or damping.

using standard three point discretization of spatial derivatives.
This allows comparison to the results of Bang, Christiansen
et al. [1,8] also discussed above.

5.1. 1D lattice with quintic nonlinearity and homogeneous
nearest neighbor coupling

The solutions in this section all have J = 100, N +

1 = 101 nodes, and initial data Ψn(0) = ψ0(xn) = (1 −

cos 2πxn)/2, xn = n/N , 0 ≤ n ≤ N . These are chosen to
give HamiltonianH just slightly negative, corresponding to the
sufficient condition for blow-up in NLS, and indeed they lead
to discrete self-trapping when noise and damping are absent.

Noise when present has strength γ = 0.5, and the default
damping strength is λ = 0.01, with these choices explained
below. Also, results for a single “standard noise realization”
are presented in many graphs, with corroboration by data from
multiple realizations where appropriate.

5.1.1. Self-focusing and exciton energy self-trapping without
noise or damping

The time evolution of Eq. (1) in the 1D quintic case without
any noise or damping is illustrated in Figs. 1 and 2, which
show the distribution of the fraction of exciton energy at each
node, |Ψn(t)|2/N , for various times t . The first figure shows all
nodes, at two times before self-trapping occurs at t = t∗ ≈ 1.3
and three times afterwards. The second graph shows the details
of nodes near the self-trapping locus, showing the trapping of a
majority of all energy at a single node.

Note that by the time that the exciton energy fraction at any
node exceeds about one half, energy is largely concentrated on
at most a couple of nodes, so that the solution is no longer
accurate as a discrete approximation of NLS. Likewise, in all
subsequent solutions data past the time when the exciton energy
at any node first exceeds one half are only relevant to the
spatially discrete model.

The evolution of the degree of exciton energy self-trapping
is shown in Fig. 3, as measured by the maximum fraction of
Fig. 2. As in Fig. 1 but restricted to nodes near the self-trapping locus, showing
exciton energy persistently concentrated largely at a single node.

Fig. 3. Evolution of the maximum exciton energy fraction, for 1D quintic, no
noise or damping.

exciton energy at any one node, as a function of time. Once
energy self-trapping has occurred, it is seen to persist, but
with significant oscillations. The oscillations fit with the idea
of the solution entering a neighborhood of an orbitally stable
stationary state that is a center: the existence of such localized
stable center stationary states has been proven in the minimal
case of N = 2 by Eilbeck et al. [17].

Note that this oscillatory behavior is purely a property of
the discrete system, as it only sets in after the maximum single
node energy becomes too high for the numerical solutions to be
relevant to the related PDE models.

5.1.2. Inhibition of self-focusing by sufficient noise, without
damping

The results here are much as seen in the simulations by
various previous authors discussed in Section 3.2. With low
levels of noise γ / 0.5, focusing of energy to a single node



8 B. LeMesurier, B. Whitehead / Physica D 225 (2007) 1–12
Fig. 4. Exciton energy distribution for 1D quintic, noise γ = 0.5, no damping.

Fig. 5. Maximum single node exciton energy fraction for 1D quintic, noise
γ = 0.5, no damping.

followed by persistent self-trapping still occurs. Higher noise
levels of γ ≥ 0.5 inhibit self-focusing and energy self-trapping,
as shown in Fig. 4 for the single standard noise realization, and
confirmed in all other noise realizations computed.

Another notable feature is the loss of the spatial smoothness
that would be needed for continuum limit PDE modeling. It
seems likely that this spatial disorder has the effect of inhibiting
exciton wave propagation, and that this is the mechanism which
prevents energy self-trapping, by preventing the needed energy
flux.

The evolution of the degree of self-trapping, or lack thereof,
is shown in Fig. 5. Note that transient spikes to values
considerably greater than the initial value occur, above all close
to the focusing time t∗ ≈ 1.3 noted above, but these are not
indications of focusing towards self-trapping. Continuing this
solution for considerably more time never again reaches the
maximum of about 0.12 seen at t ≈ 1.8.
Fig. 6. Maximum single node exciton energy fraction for 1D quintic, noise
γ = 0.5, damping from none to λ = 0.1.

Fig. 7. Exciton energy distribution for 1D quintic, noise γ = 0.5, damping
λ = 0.01, early times.

5.1.3. Effects of adding both damping and noise
The effect of adding damping at various strengths while

maintaining the noise level of γ = 0.5 is summarized in Fig. 6
in terms of the maximum fraction of total exciton energy at any
single node, and spatial structure is shown for the case λ = 0.01
in Fig. 7.

Small damping values (λ ≤ 0.0031) cause a transient
increase in collapse, but not enough to produce self-trapping;
instead, one eventually gets dispersion, as with damped noise.
With damping above some threshold near λ = 0.0032, collapse
proceeds to persistent self-trapping of over 90% of exciton
energy at a single node. Apparently solutions settle into a very
close approximation of a steady state that has energy almost
completely localized. This is also true at the lower damping
values for which self-trapping is seen, but with far slower onset.

This strong spatial self-trapping for λ = 0.01 is shown
in Fig. 8, which gives data for four times after the onset of
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Fig. 8. As above but for times after the onset of self-trapping, showing the
persistence of a near steady state.

Fig. 9. Maximum single node exciton energy fraction for 1D quintic, damping
λ = 0.01, for both noise λ = 0.5 and no noise.

self-trapping. This and the previous graph show a form far
closer to a steady state than for the undamped, noiseless case
above. The strong oscillations seen previously are absent here,
replaced only by far smaller fluctuations, perhaps just those
inevitably caused by the noise.

Fig. 9 compares the approach to a nearly stationary state
to a solution with the same damping but no noise: there
is relatively little difference, indicating that damping is the
dominant mechanism driving the solution towards a steady
state, and that this mechanism is robust enough to be little
perturbed by noise.

5.1.4. Connections to evolution of the Hamiltonian
There are indications in Eqs. (10)–(14) that the evolution of

the Hamiltonian H could be related to the occurrence of self-
focusing and self-trapping of energy, as it is for the NLS, so this
will be examined.
Fig. 10. Hamiltonian for 1D quintic, noise γ = 0.5, no damping.

First, it can be shown that the results of Eqs. (11) and (13)
apply at least qualitatively to the discrete system with noise
but no damping, by considering the latter as a discretization
of the stochastic NLS with noise having correlation length
scale proportional to the lattice spacing l. Since the precise
constant of proportionality is not known, this will be done by
checking first that 〈H〉 grows roughly linearly in time, and then
by observing that this linear growth rate is roughly proportional
to N 3, as suggested by Eq. (13).

The evolution of 〈H〉 is approximated by the black curve
in Fig. 10. This is the average of results for four noise
realizations shown by the colored curves, of which the blue
curve corresponds to the single realization used in earlier
graphs. It is seen that there is indeed a roughly linearly growth
in time up to about t = 2, and at a rate that is very consistent
between realizations.

Increasing N with initial data and noise adjusted as for
grid refinement in discretization of the SNLS, the initial
approximately linear growth rate of the Hamiltonian varies
roughly as N 3, which is consistent with the suggestion of
Eqs. (11) and (13). This indicates that in the continuum limit
N → ∞ of SNLS with uncorrelated noise, H would become
infinite instantly, and so that this equation is ill-posed in H1.

Eq. (14) suggests that the addition of damping might at least
partially offset the growth ofH caused by noise. It is natural to
ask under what circumstances this effect is sufficient to bring
H back to negative values, and how the restoration of negative
H is related to the restoration of energy self-trapping, and the
answers appear to be positive.

In the less interesting case of damping insufficient to restore
energy self-trapping, H initially grows roughly linearly as
without damping, but then levels out to fluctuation around a
significantly positive value.

With damping sufficient to restore self-trapping (λ = 0.01,
γ = 0.5), Fig. 11 shows for each of four realizations there is
initial roughly linear growth ofH at about the same rate as seen
above, but this is followed by slowing of the growth, and then a
sudden drop to negative values. These negative values quickly
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Fig. 11. Hamiltonian for 1D quintic, noise γ = 0.5, damping λ = 0.01. Same
noise realizations as in Fig. 10.

become very large and remain so, as verified by computation to
far longer times, not shown here. For each realization, the time
of this drop is fairly close to the time at which self-trapping
occurs, and indeed is driven by the sixth power nonlinearity
term in H taking on a large negative value when the energy at
any one node is a substantial proportion of the total.

6. Continuum limit approximations and simulations

PDE’s such as the DSNLS equation (2) which arise as
continuum limits of the discrete model studied here have
some potential advantages, such as the greater possibilities
for theoretical results (evolution of the “total energy” H, the
variance results for collapse) and for reduced models allowing
efficient simulation. One drawback is that the continuum limit
is only valid so long as phenomena have a spatial length scale
significantly exceeding the node spacing, and thus exceeding
the correlation length scale of the noise. Thus continuum
models are not valid in the regimes seen above where energy
is concentrated at a single node (Figs. 1 and 7) or where noise
produces non-smoothness in the form of significant variations
in value of ψn at neighboring nodes (Fig. 4).

Thus such models are at best informative when such fine
spatial structure is not present, including at early times in a
solution in which fine structure develops later. For example,
proofs or numerical evidence of single point blow-up in a
continuum approximation can support at least the conclusion
that the underlying discrete equations have substantial energy
self-trapping, at least down to the length scale of about a dozen
nodes at which the continuum approximation breaks down.

Another continuum modeling approach would be to retain
higher order terms in approximating the discrete coupling
terms by Taylor series expansions, which preserves explicit
dependence on a node spacing length l. Returning to the
original physical model of a two dimensional lattice with
cubic nonlinearity, and assuming sufficient symmetry such as
the dihedral D2 symmetry of the brick-wall molecular film
structure, one gets∑

m
JnmΨm = j2,0ψxx + j0,2ψyy

+ l2
[ j4,0ψxxxx + j2,2ψxxyy + j0,4ψyyyy] + O(l4). (17)

With the physically natural assumption of non-trivial and
attractive coupling, meaning that all Jnm are non-negative
and some are positive, all the new jab coefficients are non-
negative and all ja0, j0b are positive. Discarding terms o(l)
gives DSNLS as before, but retaining the next terms of O(l2)

and linear rescaling of the x and y variables then gives the form

i
∂ψ

∂t
+1ψ + l2

[ j4,0(ψxxxx + ψyyyy)+ j2,2ψxxyy]

+ |ψ |
2ψ + γ σψ − λ

∂(|ψ |
2)

∂t
ψ = 0. (18)

With nearest neighbor coupling on a rectangular lattice the
cross derivative term vanishes ( j2,2 = 0), but that does not
fit the brick-wall symmetry observed for cyanine dye Scheibe
aggregates.

Another higher order model comes from using Padé fitting
to the coupling term instead of Taylor polynomials, giving a
pseudo-differential equation. With nearest neighbor coupling
on a rectangular lattice one can get

i
∂ψ

∂t
+

[
I −

l2

12
1

]−1

1ψ + |ψ |
2ψ + γ σψ

− λ
∂(|ψ |

2)

∂t
ψ = 0. (19)

One potentially advantage is that the pseudo-differential
operator is bounded, which explicitly removes the risk of an
“ultra-violet catastrophe” and so might facilitate analysis.

6.1. Discrete 2D radially symmetric DSNLS

For numerical simulation, one advantage of a continuum
limit is that it allows the use of dimensional reduction of the 2D
lattice model through imposition of radial symmetry, as used in
conjunction with a further collective coordinates reduction to a
single nonlinear ODE in [8]. Note however that this involves
the physically unlikely assumption of radially symmetric noise,
and so is of primarily mathematical interest, and only for
confirmation of the robustness of qualitative features of the
inhibition of energy self-trapping by noise and its restoration
by damping.

These qualitative features were observed in the single
ODE reduction of [8] and corroborated above for the 1D
quintic discrete system, and it will now be seen that they
are also confirmed in simulations of the radially symmetric
2D cubic case of DSNLS. Such simulations also provide a
computationally efficient initial comparison to simulations of
the full 2D cubic SNLS model (with noise but no damping) by
Bang et al. [1].

These simulations are done with a simple nearest neighbor
discretization. Rather than pursue more sophisticated numerical
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study of this equation, simulations of the full 2D discrete model
are planned for a future paper.

All results are for the initial data from discretization of
ψ(0, r) = 1.65 sech(r) on 0 ≤ r ≤ 10 with 256 equally
spaced nodes. This function is close to the ground state Townes
soliton, giving the initial value of the HamiltonianH ≈ −0.006
and N ≈ 1.8867, just above the collapse threshold value
Nc ≈ 1.87. Thus singularity formation is ensured in the absence
of noise and damping, but only just. The idea of this initial data
choice is to maximize the sensitivity of self-focusing effects to
the perturbations applied.

Noise without damping inhibits self-trapping of energy if its
strength γ exceeds a threshold, between 0.01 and 0.02. The
Hamiltonian for each realization H grows roughly linearly in
time, and the approximation of the ensemble average 〈H〉 given
by averaging even a few realizations grows even faster. If the
spatial discretization is refined to more nodes, the rate constant
increases rapidly, suggesting the failure of the continuum limit
and ill-posedness of this form of SNLS.

With above-threshold noise γ = 0.02, damping restores
energy self-trapping once its strength λ in turn exceeds a
threshold, between 0.05 and 0.1. This is related to first slower
growth of H, and then its decrease to substantially negative
values at about the same time as the self-trapping.

6.2. The 1D quintic continuum limit solved with spectral
spatial discretization

As a final test of the robustness of these phenomena
under modeling approximations, the DSNLS continuum limit
in the 1D quintic case above has been solved numerically
using a discretization very far from the three point scheme
corresponding to the discrete system: spectral discretization,
with periodic boundary conditions.

Once again, the main qualitative features described above
are seen, so details are omitted.

7. Conclusions and plans

Noise without damping has been seen to inhibit self-trapping
in the discrete system, and this is related to an increase in
the (initially negative) Hamiltonian. There is a minimum noise
level needed to do this; with sufficiently low noise levels,
self-trapping still occurs. This pattern is as suggested by the
theoretical results of [18,13] for the continuum limit case with
spatially correlated noise.

With damping as well as noise, self-trapping is seen to be
restored, again with a threshold. That is, for a given noise level
that without damping would inhibit self-trapping, sufficiently
low damping levels still lead to no self-trapping, but stronger
damping restores self-trapping. The damping level needed to
restore self-trapping is also that which suffices to reverse the
noise induced growth of the Hamiltonian, causing it instead to
return to negative values.

The continuum limit as a stochastic NLS equation with
spatially uncorrelated noise appears to be ill-posed, at least
in H1: solutions develop substantial differences between the
values at neighboring nodes. When self-trapping occurs, it also
involves such substantial differences, so again the phenomenon
is outside the realm of the SNLS continuum limit.

Directions for future work include the simulation and
analysis of full 2D models; consideration of the 1D cubic case
and related models of nonlinear waves in long biomolecules,
where energy self-trapping still occurs in discrete NLS models
but the NLS continuum limit does not have self-focusing blow-
up; analysis of the well-posedness of various PDE and pseudo-
differential equation models, including the effects of damping;
direct analysis and study of the ODE system (lattice models)
with various interaction forms such as longer range; and
simulation with time correlation in the noise, as seen in Eq. (7).
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