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bstract

Davydov’s modeling of long-range energetic pulse propagation in �-helix protein started with an exciton–phonon ODE system
nd proceeded to the integrable nonlinear Schrödinger (NLS) equation in the limit of both large pulse width relative to amino acid
pacing and high characteristic speed of the “phonon” terms. Soliton solutions of NLS have then been used to propose a mechanism
or coherent long-range propagation of energetic pulses in such proteins.

Here ODE models are studied directly, in particular a simplification that considers only coordination bond coupling parallel
o the helix axis, discounting interactions along the molecular backbone. The time discretization is constructed by a new method
ased on discretizing the Hamiltonian using a finite difference calculus for gradients, which ensures exact conservation of both the
amiltonian and all quadratic and linear conserved quantities, and allows a simple, highly stable iterative method for solving the

esulting implicit system.
The simulation results show that as the parameters get further from the continuum limit regime, substantial changes occur in the

olution form. For characteristic phonon speed drops below the characteristic speed of the exciton equation, the main exciton pulse
lows and narrows, and other faster exciton pulses appear with speeds related to the characteristic phonon speed. This suggests that
ore careful simulation studies are needed, based on Scott’s full model or further refinements.

 2010 IMACS. Published by Elsevier B.V. All rights reserved.
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.  Introduction  and  main  results

.1. Energy–momentum  conserving  and  symmetry  preserving  discretizations
Many models of nonlinear wave motion and pulse propagation have a Hamiltonian form, embodying conservation
f energy and other “momenta”: Noetherian first integrals related to continuous symmetries in the dependent variables.
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These include many important nonlinear dispersive PDEs, and also large systems of ordinary differential equations
such as models of wave motions in molecular systems. In fact, these ODE and PDE models are often connected by
spatial discretizations in one direction and by continuum limits in the other. Since numerical solution will in the end
involve spatial discretization, and the class of wave-equation-like Hamiltonian ODE systems is richer, the focus here
is on ODE systems, but ones having features related to quasi-linearity of associated PDEs.

The main system considered here is a model of energetic pulse propagation along protein and other long molecular
chains, which originated in the work of Davydov [3,4] and has been developed in particular in the work of Scott [13,14]:
see also the more recent survey [15]. Specifically, we consider a modification of Davydov’s original ODE system,
discounting lateral couplings along the molecular backbone to give a simpler model of the longitudinal coordination
bond couplings, where the interesting phenomena lie.

The discrete  gradient  method  described here is related to the approach of Gonzales [5]. As there, the first main
ingredient is discretizing the Hamiltonian form of an equation by choosing a suitable discrete  gradient, and using
partial counterparts of Noether’s Theorem:

1. If a discrete gradient respects an affine  continuous symmetry, the solutions of the discrete system also do.
2. If a symmetry of the original system is associated with conservation of a quadratic  (including linear) quantity, this

is also conserved by the time-discrete system.

These mimic well-known properties of Hamiltonian systems, but with the added restrictions of affine  and quadratic.
Fortunately, both conditions are met by all momenta of many physical systems, including those of interest here. (For
example, in a standard mechanical system Hamiltonian H =  ‖p‖2/(2m) +  V  (x), invariance under rigid motions is
described by affine symmetries related to quadratic first integrals.)

The second main ingredient here is a direct, mostly canonical procedure for constructing a discrete gradient, based
on defining a suitable finite difference calculus, which works for a wide variety of cases. For example, this approach
works canonically when no term in the Hamiltonian involves products of functions of three or more different variables.
Somewhat related approaches were taken by Jimenez [7] and by Li and Vu-Quoc [11], but those works deal with
discrtizations of PDEs in a way that respects only a single conservation law, either energy or linear momentum.

The third main ingredient, needed only in cases where the above canonical form fails due to “multiple product
nonlinearities”, involves factorizing such multiple product terms in terms of quadratic and linear factors that are
invariant under all the affine symmetries.

The final ingredient is that the resulting difference equations should preserve the time-reversal symmetry of the
differential equations: it has been commented by Hairer et al. [6] that this property seems more important than exact
energy conservation itself, though experiments cited below indicate that having both properties can be even better.

Note that there has been complementary work on constructing spatial discretizations for PDEs of Hamiltonian form,
such as discretization of the nonlinear Schrödinger equation (NLS) to the Ablowitz–Ladik system [1,2] and the larger
class of discretizations studied in [8,9]. However the resulting ODE systems are not quite of the form considered here:
for example in the Ablowitz–Ladik system, the discrete conserved quantity corresponding to the L2 norm in NLS
is �(

∑
Q∗

nQn+1) rather than
∑

|Qn | 2, and the Hamiltonian involves transcendental functions, impeding use of the
time-discretization methods described here.

1.2. Time-discrete  Hamiltonian  systems  via  discrete  gradients

Time-discrete  Hamiltonian  systems  are dynamical systems in which the state at one time T  is described by a finite or
infinite state vector zT =  {zT

n }, and the time advance map is determined by the Hamiltonian function H of the state in
a way that mimics continuous time Hamiltonian dynamics, in particular conserving the Hamiltonian. The Hamiltonian
systems of ODEs considered here are of the form
dz
dt

= J∇H,  (1)
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ith z  an N-component state vector, H =  H(z), and J  an anti-Hermitian N  ×  N  matrix. All systems here are in fact in
 mixture of the real and complex canonical forms:

dun

dt
= ∂H

∂pn

,
dpn

dt
= − ∂H

∂un

,
dQn

dt
= −i

∂H
∂Q∗

n

,
dQ∗

n

dt
= i

∂H
∂Qn

,  (2)

here formally one considers Qn and Q∗
n as independent variables, though in practice they will be complex conjugates,

aking the last equation redundant.
A discrete version of the above will be a time-discrete Hamiltonian system:

�z :=  zT +1 −  zT =  J∇̃H �t  (3)

iven by a suitable choice of discrete  gradient ∇̃H having components ∂̃znH(zT ,  zT +1) that are approximations of the
artial derivatives ∂H/∂zn. Dependence on zT+1 is necessary, making such schemes implicit.

.3. A  difference  calculus  for  multivariable  functions

Conservation of energy H will be ensured by computing all discrete gradients in a way that satisfies the difference-
radient rule

�F = ∇̃F  ·  �z  =
∑

n

∂̃znF  �zn (4)

hich is a discrete counterpart of the expansion for the differential of a multivariate function in terms of its gradient.
his will be done by determining the components ∂̃znF  through a difference calculus that combines centered difference
uotients for functions of a single variable through rules for linear combinations, compositions, and products.

There are always infinitely many choices for such an expansion, with no generally successful or canonical choice:
pecifically, problems arise with products involving more than two variables. Thus the critical steps are first finding an
ssentially canonical choice for products of two functions, and then appropriate handling of higher order products. It
s not possible to handle products of more than two functions in a canonical or universally successful way, and this is
elated to the limitation (also noted by Gonzales [5] from a different perspective) to momenta that are at most quadratic
n the state variables. Fortunately the momenta of most physical systems are linear or quadratic, so the discrete gradients
f these momenta can be given a canonical form. The handling of higher order products in the Hamiltonian is then
one by grouping variables into linear or quadratic terms that are invariant under the symmetries.

. The  single  spine  Davydov  model  of  pulse  propagation  in  a  molecular  chain

The motivating example used here is a model of pulse propagation in a one-dimensional quasi-molecular structure,
 slight variant of the model introduced by Davydov [3,4] for �-helical protein. The variation is that lateral coupling of
mino acid residues along the helical backbone is neglected, giving an equation for a single nearly straight line “spine”
f residues coupled by coordination bonds: the interesting physical phenomena appear to be within such spines.

There are natural extensions to include more detailed modeling of protein molecules [13,14], related models of
hains and lattices of molecules bound by dipole interactions, and discretizations of various PDE wave equations such
s models related to NLS arising in nonlinear optics, plasma physics and elsewhere. In many systems of interest the
ndependent variables describe some mixture of

excitons: complex quantities Qn evolving under some discrete variant of the Schrödinger equation, and
phonons: position and momentum pairs (un, pn) evolving according to classical mechanics.

In Davydov’s words, his ODE system describes a “one-dimensional quasi-molecular structure”, with the main

eatures being excitons Qn at each amino acid residue n  describing the probability of a quantum mechanical excitation
f the residue’s C O group, in which the main wave of interest propagates through nearest-neighbor dipole interactions;
dditional phonon oscillations in the stretching un of each of the coordination bonds between adjacent residues along
he structure; and local coupling between excitons and phonons.
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With some rescaling to reduce the number of parameters, the system is Hamiltonian with total energy:

H =
∑

n

L|Qn+1 −  Qn|2 + ω2

2
p2

n +  (un+1 −  un)2 +  (un+1 −  un−1)|Qn|2 (5)

where L  and ω  are positive constants. Various choices of end conditions are possible, of which the simplest is index
range 1 ≤  n  ≤  N  and the fictitious end-point values

Q0 =  0,  QN+1 =  0,  u0 =  u1,  uN+1 =  uN, (6)

akin to zero Dirichlet boundary conditions on Qn and on the bond stretchings dn = un+1 −  un.
All methods in this paper extend to the larger class of exciton–phonon  systems  given by Hamiltonians of the form:

H =
∑
n,m

Ln,mQnQ
∗
m +  G(Q,  Q∗) +  V(u) + K

2

∑
α

p2
α +

∑
n,m

χn,m(u)QnQ∗
m (7)

with appropriate reality and symmetry conditions. This form can handle two- and three-dimensional molecular arrays,
spatial discretizations of various nonlinear wave equations in any spatial dimension, and multiple chains such as coupled
NLS systems of nonlinear optics.

The differential equations are given by the combined real and complex canonical Hamiltonian forms above, giving
the single spine Davydov equations:

i
dQn

dt
+  L(Qn+1 −  2Qn +  Qn−1) =  (un+1 −  un−1)Qn, (8)

1

ω2

d2un

dt2 −  (un+1 −  2un +  un−1) = 1

2
(|Qn+1|2 −  |Qn−1|2),  (9)

Note that L  could also be eliminated by rescaling, but is useful in constructing a continuum limit approximation. In
addition to the total energy H, there are two other conserved quantities:

the exciton  number  E = ∑
n|Qn|2 and the phonon  momentum  P = ∑

npn.

Note that there is no “exciton momentum” corresponding to the momentum �(
∫

Q∗Qxdx) of the NLS equation;
this is already lacking in standard discretizations of the NLS equation.

2.1. Continuum  and  NLS  limits

Following Davydov, we can consider the limit L  →  ∞, ω  →  ∞  to approximate the above system by a NLS equation.
First, a continuum limit is given by letting L  →  ∞  and ω  →  ∞  such that L/ω2 →  ε  > 0, constant. This is the long wave-
length limit of slow variation of Qn values from node to node. Defining �x  =  1/

√
L  and letting Qn(t) = Q(t, n�x),

un(t) = u(t, n�x)/�x, the limit L →  ∞  gives what is here called the continuum  Davydov  system:

i
∂Q

∂t
+ ∂2Q

∂x2 =  2
∂u

∂x
Qn,  (10)

ε
d2un

dt2 − ∂2u

∂x2 = ∂(|Q|2)

∂x
.  (11)

Next, the limit ε  →  0 eliminates the time derivative from (11), leading to ∂  u/∂x  = −  | Q  | 2. This can be used to
eliminate u  from (10), giving the focusing cubic NLS equation:

i
∂Q

∂t
+ ∂2Q

∂x2 +  2|Q|2Qn =  0.  (12)

This is completely integrable, with solutions including the solitons:

Q(t, x) =  a  sech(a(x  −  vt  −  x0))eivx/2+(a2−v2/4)(t−t0)+θ0 .  (13)
Davydov proposed that solutions approximating these solitons offer a mechanism for energy transfer in �-helix
protein. This paper investigates the extent to which similar pulse-like solutions arise in the underlying more accurate
discrete models.
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For testing of the numerical method, it will also be convenient to look at the intermediate limit ω  →  ∞, L  constant,
f the single spine Davydov equations, giving:

un = 1

2
|Qn|2 +

∑
m>n

|Qm|2 (14)

nd thus a non-standard discrete nonlinear Schrödinger (DNLS) equation:

i
dQn

dt
+  L(Qn+1 −  2Qn +  Qn−1) +

(
|Qn−1|2/2 +  |Qn|2 +  |Qn+1|2/2

)
Qn =  0.  (15)

The methods developed here are also intended for future use with more detailed models such as the modified  Davydov
ystem introduced by Scott [13,14]. That model takes account of other weaker interaction terms as well as the coupling
f three spines in the molecule’s helical structure.

. Conservative  approximations  of  derivatives

The strategy here is first to characterize discrete approximations of the gradient of the Hamiltonian which generate
ime-discrete flows conserving that Hamiltonian, and then to choose amongst these ones that also respect certain other
ymmetries and conserved quantities of the continuous Hamiltonian flow, in particular quadratic invariants such as arise
rom affine symmetries. In practice, most symmetries and invariants of Hamiltonian models of physical systems have
he needed “affine/quadratic” form. One novelty of the approach here is constructing the components of the discrete
radient by a difference calculus mimicking the necessary properties of differentiation: linearity and rules for products
nd compositions. (A quotient rule is never necessary, as a quotient can be replaced by a product and composition with
he reciprocal function.)

Conserved momenta are related to invariance of H under continuous symmetries, in particular affine symmetries.
 key to the associated differential equation conservation laws is equivariance of the gradient under these symmetries,

nd for analogous reasons, the same equivariance should be imposed on the discrete gradients here.
Notation for  differences  and  difference  quotients. For a scalar or vector independent variable z, the values at the

eginning and end of the current discrete time step will be denoted as z− and z+ respectively, and the difference and
ean of these values as:

�z = �z(z−,  z+) :=  z+ −  z−,  z := z− +  z+

2
.  (16)

Similarly for a function f  of z:

f− :=  f  (z−),  f+ =  f  (z+),  �f  =  �f  (z−, z+) :=  f+ −  f−, f̄ :=  (f+ +  f−)/2.  (17)

As overlines denote temporal averages, complex conjugates are always denoted with stars, as in Q∗.
Conservation of  energy  and  the  discrete  gradient  rule. The first thing to ensure is conservation of energy for a time-

iscrete Hamiltonian system (3), and this can be verified by mimicking the proof for continuous-time Hamiltonian
ows so long as the discrete gradient ∇̃H used satisfies the difference-gradient rule (4):

�H =  H(z+) −  H(z−)

= ∇̃H · �z  from (4),

= ∇̃H · J∇̃H �t  from (3),

= 0 as J  is anti-Hermitian.
Thus, all derivative approximations will be chosen to ensure that the difference-gradient rule holds.
Canonical rules. It is natural to use linearity, which also preserves the difference gradient rule. Linearity combined

ith imposing time reversal symmetry and the difference gradient rule on each term in a sum then leads to canonical
ules for all except multiple products.
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First, for a function f(g) of a single variable g, the difference-gradient rule (4) dictates a simple and familiar difference
scheme:

∂̃xf  (g−,  g+) = �f

�g
= f+ −  f−

g+ −  g− .  (18)

That is, the standard centered difference approximation. The apparent problem of possible division by zero can be
eliminated by algebraic simplification when f  is a power function, sufficient to handle all systems considered here.
This approximation is second order accurate, indicating that this is the best that can be expected in this framework of
single-step schemes. (However order can be increased if desired with standard symmetric step composition methods.)

Next, for compositions f(g(z)) with f  a function of a single variable, one gets the discrete  chain  rule:

∂̃zn (f  ◦ g)(z−, z+) = �f

�g
∂̃zng(z−, z+). (19)

Finally, for a product of two factors, time-reversal symmetry leads to the discrete  product  rule:

�(fg) =  ḡ�f  + f̄  �g.  (20)

Handling multiple  products  with  invariant  product  factors. The one remaining challenge is products of more than
two factors. Unfortunately, it is impossible to construct an acceptable general rule for this case. The problem is that
if one applies the above product rule to a triple product fgh  via the various factorizations f(gh), g(fh), etc., one gets
different results, and attempts at symmetrization such as by averaging over all alternatives does not necessarily give a
form leading to conservation of all momenta.

Instead, we must choose how to order the factors in products for compatibility with the (affine) symmetries. The key
is to group variables into combinations that are invariant under all the affine symmetry transformations, differentiating
such factors last in any multiple product. This is illustrated in the next section.

4. Discretizing  the  single  spine  Davydov  system

We seek a discrete gradient expansion for the single spine Davydov system Hamiltonian (5) that respects the
conserved quantities E and P. Only the term (un+1 −  un−1)QnQ

∗
n involves products of more than two variables, so all

the rest is handled canonically. For that term, the product expansion should keep the two invariant factors un+1 − un−1
and QnQ

∗
n together:

�((un+1 −  un−1)(QnQ
∗
n)) =  (un+1 −  un−1)�(QnQ

∗
n) +  �(un+1 −  un−1)QnQ∗

n

=  (ūn+1 −  ūn−1)Q∗
n�Qn +  (ūn+1 −  ūn−1)Q̄n�Q∗

n +  QnQ∗
n(�un+1 −  �un−1).

The resulting discrete  single  spine  Davydov  system  is

�Qn =  i

[
L(Q̄n+1 −  2Q̄n + Q̄n−1) + 1

2
(ūn+1 −  ūn−1)(Q̄n)

]
�t,  (21)

�un =  ω2p̄n �t,  (22)

�pn =
[
ūn+1 −  2ūn +  ūn−1 − 1

2

(
|Qn+1|2 −  |Qn−1|2

)]
�t.  (23)

4.1. Verifying  conservation  of  the  two  momenta

Exact conservation of the two momenta is again verified by mimicing calculations for the ODE case.
For exciton energy:
�E
�t

=
∑

n

Q∗
n�Qn +  c.c.

�t
=  i

∑
n

[
L(Q̄n+1 −  2Q̄n + Q̄n−1) + 1

2
(ūn+1 −  ūn−1)(Q̄n)

]
Q∗

n −  c.c.  =  0.
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For phonon momentum:

�P
�t

=
∑

n

�pn

�t
=

∑
n

[
(ūn+1 −  ūn) −  (ūn −  ūn−1) − 1

2

(
|Qn+1|2 −  |Qn−1|2

)]
=  0.

here there are fictitious values at the end-points as in (6), ensuring that the sums telescope to zero.
The key in each case is that the quantities E and P do not involve products of more than two variables, and for such

orms, the discrete derivatives have canonical form, which duplicates all necessary properties of true derivatives.

.2. A  linearly  implicit  iterative  scheme

The above equations are implicit and nonlinear, so an iterative scheme for their approximate solution is needed.
ortunately, the Q  Eq. (21) is linear in the Q  variables, and likewise the other equations are linear in un and pn. To
escribe the iterative method proposed, a modified form of Eqs. (21)–(23) is used:

(a) express each equation with the only unknowns being the “�” terms rather than the time average terms, via
ūn =  un + 1

2�un and so on;
b) eliminate the �un now present in the modified (23) using (22): combined with the above rewriting:

ūn =  un + 1

2
�un =  un + ω2

2
p̄n�t  =  un + ω2

2

(
pn + 1

2
�pn

)
�t.

Then cycle through updates of the vectors �p, �u  and �Q:

. Solve approximately for �pn using the latest �Qn approximations in the modified (23).

. Solve approximately for �un using the latest �pn approximation in the modified (22).

. Solve approximately for �Qn using the latest �un approximations in the modified (21).

This involves only simultaneous tridiagonal linear equations at each stage, so cost is O(N), comparable to an explicit
terative method. However, it has a number of advantages over any explicit method:

 stiffness due to the typically large coefficient L  is well controlled, as each iteration is of implicit trapezoid form;
 at each iteration, the exciton energy E and phonon momentum P are exactly conserved: the iterative modifications

of Equations (21) and (23) work just as well in the above verifications of conservation; this is useful because in
practice a low, fixed number k  of iterations is often used.
the approximation of linear terms is second order accurate, with the first iteration limited to first order accuracy only
in the typically smaller nonlinear coupling terms: this leads to very accurate conservation of the Hamiltonian after
a quite small number of iterations, often to within machine accuracy after a modest number of iterations, as seen in
the examples below.

.  Testing  the  DG  method  at  large  ω:  handling  phonon  stiffness

Since as noted above, L  can be rescaled, it is fixed at L  = 100, and thus �x  = 1/10 is used when relating to continuum

imit results and sech pulses. Initial testing is done with high phonon speed ω  = 1000 (and with ω  = 100, giving very
imilar results), and initial data a sech pulse close to a discretization of the initial values of the soliton form:

Qn(0) =  sech(xn)eivxn/2,  xn =  n�x,  �x  =  1/10,  −11,000 ≤  n  ≤  11,  000.  (24)
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This combination of L, ω  and Qn(0) is close to the DNLS and NLS limits, and so the initial data used for the phonons
is based on the DNLS limit (14):

un = 1

2
|Qn|2 +

∑
m>n

|Qm|2, pn =  0. (25)

The system is solved initially for very small time step �t  = 1/20, 000 �  1/ω, to be sure of resolving all details; then
step size is increased to as high as �t  = 1/100 
  1/ω, far too large to resolve all details of the phonon solution and well
beyond the stability limit of any explicit discretization, but adequate to resolve the slower time scale of the exciton
evolution.

Briefly, the solutions for Qn(t) are very close to the discretization of the NLS soliton solution of (13), and at nodes
n anywhere near the soliton pulse, values of un(t) stay close to the form of (14). However, the finite signal speed of (9)
makes it impossible for un to have exactly this form. The discrepancy arises only in low amplitude compression waves
going in each direction at speed ω, very quickly clearing the exciton pulse and thus not significantly interacting with
that pulse.

Increasing time step size leads to significant inaccuracy in the fast phonon pulses, but negligible changes in either
the exciton pulse or of the un values in the “exciton pulse zone”: stiffness is handled harmlessly, so that exciton pulses
can be handled with efficiently large time step sizes. Also, the inaccuracy that does appear is primarily in the velocity
of the pulses, while the amplitude and sech form is very well preserved. This good handling of important qualitative
features is what is hoped for and often achieved with structure-preserving methods such as this.

Finally, some notes on iteration counts and thus cost. For step sizes small enough to resolve all time scales, the
minimal two iterations are sufficient to conserve H “exactly”; meaning to within machine accuracy. For the largest
step size, �t  = 1/100, fiver iterations suffice for each conservation.

Further details of this algorithmic testing are to appear in [10].

6. Energetic  pulses  in  the  single  spine  Davydov  system  arising  from  an  initial  exciton  impulse

Next, we move beyond the rather special initial data close to the soliton form, and study the genesis of sustained
compact traveling energetic pulses arising from an initial localized input of energy, akin to what soliton theory predicts
for the NLS limit. This is done with initial impulse data, asymmetric in amplitude and phase in order to initiate pulse
movement, with the only non-zero initial values being:

Q0(0) =  4,  Q0(0) =  16e−i/2. (26)

6.1. Initial  impulse,  large  ω

In the absence of interaction with u, the solution for Q  with impulsive initial data can be verified to involve
dispersive radiation with a maximum speed of about 2L, = 200, through the purely linear “discrete Schrödinger”
part of the equation. Conversely, with Q  = 0 the solution for u  for impulsive initial data consists of a leading phonon
compression wave in each direction of speed ω, with a slower trailing rarefaction wave in each direction. Thus for ω

large enough relative to 200, one expects the phonon compression wave to be ahead of the Q  radiation and have no
interaction with Q, while the rarefaction waves can interact, and this interaction with Q  can be hoped to approximate
the “NLS” limit. All this is much as discussed in the previous section.

This is confirmed for ω  = 1000, 500, and even for ω  = 200, and is illustrated in Fig. 1 for ω  = 500. There is a single
Q pulse moving to the right of roughly constant height, width, and speed. Approximate values are:

• ω = 1000: height 8–9, speed 60, width 8 nodes (measured at 1/10 maximum height).
• ω  = 500: height 8–9, speed 44, width 9.

• ω  = 200: height 10, speed 10, width 7.

The pulse moves in concert with the trailing phonon rarefaction wave, and its speed decreases as ω  does. Ahead
of this is low amplitude exciton radiation with front speed about 200 and decaying amplitude; its amplitude is low
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ig. 1. (a) Rightward moving pulses in |Qn(t) | arising from initial impulse, ω = 500, L = 100, t = 0, 2, . . ., 16. (b) At t = 16, near the pulse, showing
ts width of only a few nodes and almost complete separated from the faster radiation.

nough that it is essentially decoupled from the phonons, and thus propagating “linearly”. As time increases, the pulse
ecomes mostly separated from this dispersing radiation.

.2. Initial  impulse,  small  ω

For ω  well below the Q  radiation front speed, one still gets a dominant very narrow pulse moving slowly right with
he trailing u  rarefaction wave, its speed decreasing with ω  as before. However, the leading u  compression waves are
ow within the Q  radiation, and this has a new effect: a second, smaller, faster exciton pulse in each direction of speed
, coupled to the phonon compression waves, and again of roughly constant height, width, and speed. Ahead of this is
ispersive radiation, as before. Eventually the Q  radiation leaves all the pulses behind, leaving nearly isolated narrow
ulses. Fig. 2 shows this for ω  = 50; results for ω  = 20 are very similar.

As one might expect, there is a transition: for ω  = 100 one gets the main slow pulse, smaller pulses going in each
irection trailing the radiation, slightly faster than ω, but also another pair of pulses at the leading edge of the radiation,

peed slightly below the Q  radiation speed.
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Fig. 2. Pulses in |Qn(t) | arising from initial impulse, ω = 50, L = 100: (a) t = 2. (b) t = 16. Right half only, due to near symmetry.
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7.  Discussion  and  conclusions

The discrete gradient method introduced here gives time discretizations for Hamiltonian ODE systems that conserve
energy and all quadratic momenta, and is suited to a range of large, stiff ODE systems including ones arising from
molecular systems and as spatial discretizations of various nonlinear wave equations related to NLS. The discretiza-
tions retain the benefits of quasi-linearity, leading to simpler nonlinear equation solving than in more comprehensive
approaches to conservative discretizations such as that of McLachlan et al. [12]. While discretizations given by the
discrete gradient method are of a form described by Gonzales [5], the approach here simplifies construction of a suit-
able algorithm: in particular, linear terms and those involving at most two unknowns are handled canonically, with no
additional constructions or choices required to get a conservative form.

On a modification of Davydov’s ODE model of one-dimensional quasi-molecular structures, the algorithm handles
well the extreme stiffness and high pulse speeds in the “phonon” term that arise for high characteristic phonon speeds,
while confirming the validity of the NLS limit in this case.

For the near-NLS limit of large phonon characteristic speed ω, impulsive initial data leads to pulses resembling sech
solitons, trailing low amplitude, dispersing exciton radiation and a low amplitude phonon compression wave in each
direction of speed ω: all consistent with expectations based on known behavior of NLS and of the linear, decoupled
phonon equation.

For phonon speeds significantly below than the characteristic exciton radiation speed, the slow exciton pulse is still
seen, slower for lower ω, but there is also a previously unexpected new phenomenon: a faster, somewhat weaker coherent
exciton pulse moving in each direction with the phonon compression waves at speed ω. Both pulses eventually separate
out from the low level exciton radiation. Thus there is a second potentially faster coherent exciton pulse mechanism
for energy transfer.
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