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Abstract. A mathematical model is introduced for weakly nonlinear wave
phenomena in molecular systems like DNA and protein molecules that in-
cludes thermal effects: exchange of heat energy with the surrounding aqueous
medium. The resulting equation is a stochastic discrete nonlinear Schrödinger
equation with focusing cubic nonlinearity and “Thermal” terms modeling heat
input and loss: PDSDNLS.

New numerical methods are introduced to handle the unusual combination
of a conservative equation, stochastic, and fully nonlinear terms. Some analysis
is given of accuracy needs, and the special issues of time step adjustment
in stochastic realizations. Numerical studies are presented of the effects of
thermalization on solitons, including damping induced self-trapping of wave
energy, a discrete counterpart of single-point blowup.

1. Introduction. Pulse propagation in bio-polymers is of possibly great signifi-
cance to energy transmission in protein and conformational change in DNA, and
accurate mathematical modeling relies on nonlinear effects and thermal effects: en-
ergy input to internal vibrational modes from heat in the aqueous medium of the
molecule, and energy loss through radiation from such modes.

The modeling and theory started with the work of Davydov [6, 7, 8] on protein
molecules, giving continuum limit equations related to the (one-dimensional, focus-
ing, cubic) nonlinear Schrödinger equation (NLS), with the sech soliton solutions
of that equation playing an important role as pulses capable of carrying energy for
significant distances along molecules.

Further developments by Scott, Eilbeck and Lomdahl [10, 15] emphasized spa-
tially discrete models rather than continuum limits, and extended such models to
other molecules. Indeed, such discrete NLS (DNLS) models seem to arise from
a few generic features: dipole coupling along polymers interacting with localized
vibration modes with faster time scales. An important feature revealed only by
spatially discrete models is self-trapping driven by nonlinear self-focusing, in which
energy from traveling pulses becomes localized in an oscillation at one or a few
spatial nodes.

More recent work by Bang, Christiansen, Giadidei, If, Johansson, Kivshar, Min-
galeev, K. Rasmussen, Yakimenko [1, 5, 14] extends such modeling to DNA molecules,
and adds thermal effects, modeling thermal energy input and radiation as stochastic
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driving and liner damping respectively of local vibration modes. Discrete models
become even more important with stochastic effects, since these violate the smooth-
ness over longer spatial scales need to justify continuum limit, so here Stochastic
Discrete NLS (SDNLS) models are considered, with only occasional comparisons
to more familiar NLS and Stochastic NLS (SNLS) models for comparisons. Also,
previous work shows that modeling thermal energy input by stochastic driving but
without a balancing energy loss mechanism leads to unphysical effects: excessive
disorder and disruption of pulses, due to thermal run-away [1].

Thus a major goal here is proper handling of the internal mode damping, intro-
duced in previous models but not handled in simulations, and direct attention to
the discrete model rather than passing to continuum limits and then discretizing
for numerical simulations. The internal mode damping means that the equations
are no longer semi-linear (or even quasi-linear), and thus their numerical solution
requires some refinement of previous numerical methods for NLS and SNLS, refine-
ments first introduced in [13], which deals with a related model of two dimensional
molecular lattices.

Numerical studies are then done are then applied to the effects of thermalization
on solitons and self-trapping.

2. Physical modeling and the slowly varying amplitude approximation.

The model used here is introduced in [1, 4], and full details of the derivation can be
found there. Without modeling thermal energy input and radiation, a fully quantum
mechanical derivation can be made from a Hamiltonian, as done by Bartnick and
Tuszyński [2]. In semi-classical reduction, this comes from a Hamiltonian H =
Hco + Hph + Hint where

• Hco = −
∑

n,m 6=n

Jnmψnψm is the energy of coupling between the exciton modes

ψn of nearby molecular subgroups,

• Hph =
M

2

∑

n

[

(dun/dt)
2

+ (ω0un)2
]

is the energy of localized phonon modes

un, such as vibrations of molecular bonds, and
• χ|ψn|2un is the energy of interaction between the exciton and phonon modes.

The system of ODE’s arising from that Hamiltonian can be modified by adding
random driving forces on phonon modes from Brownian motion, νẇn(t) and energy
loss from the phonon modes modeled as linear damping, −Mλdun/dt, giving the
system

i
dψn

dt
+
∑

m 6=n

Jnmψm + χunψn = 0 (1)

M
d2un

dt2
+Mλ

dun

dt
+Mω2

0un = χ|ψn|2 + νẇn(t) (2)

Molecular bending, stretching and motion are ignored, so we model “straight,
stationary” molecules: c.f. [5, 14].

Here, Jnm is the strength of the dipole coupling interactions between molecular
sub-groups; χ is the strength of exciton-phonon coupling; M is the mass of each
molecular sub-group; ω0 is the frequency of the phonons; ẇn(t) is the formal deriva-
tive of a Wiener process representing random external forces such as collisions with
water molecules, uncorrelated in n and t; ν is the strength of the random external
forces; and λ is the strength of the phonon damping or radiation rate.
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Typically the coupling constants are uniform except at domain boundaries, so
that the quantities Jnn :=

∑

m 6=n Jnm have a common value J0 except possibly at
some boundary nodes. Then it is convenient to remove a fast phase evolution term
eitJ0 by adding −J0

∑

n |ψn|2 to the coupling energy. Next, the un can be elimi-
nated with the variation of parameters formula, giving a time integral expression
in terms of the single node exciton energy En = |ψn|2 and ẇn. Using the slowly
varying amplitude approximation that the exciton amplitudes vary far slower than
the phonon frequency, |(En)t ≪ ω0, and with some rescaling of variables to elimi-
nate various constants, one gets the central object of this study, the Phase Damped

Stochastic Discrete Nonlinear Schrödinger Equation (PDSDNLS)

i
dψn

dt
= −Lψn +

[

−|ψn|2 − νẆn(t;ω) + λ
d

dt
(|ψn|2)

]

ψn, where (3)

Ẇn(t) =

∫ t

0

e−λω2

0
s/2 sin(ωs)ẇn(t− s)ds, Lψn =

∑

m

Jnmψm. (4)

The coupling operator L typically resembles a discrete second derivative: for ex-
ample with uniform nearest neighbor only interactions and defining 1/δx2 as the
common non-zero coupling strength Jn,n±1, Lψn = (ψn−1 − 2ψn + ψn+1)/δx

2.

The new noise terms Ẇn(t) are still uncorrelated in n, but are now correlated in
time through the integral in (4). Note however that the correlation is on a time scale
of 1/(λω2

0), and since ω0 gives the fast time scale suppressed by the slowly varying
envelope approximation; thus, once the rescaled damping strength λ is sufficient,
this temporal correlation time scale will be smaller than the time scale on which the
model is valid, rendering the noise effectively uncorrelated again. Thus, temporal
noise correlation is ignored below, and the numerical solutions below are done with
uncorrelated random values.

It is sometimes useful to eliminate the time derivative from the damping related
term. Solving Eq. (3) for dψn/dt and substituting into that term gives

i
dψn

dt
= −Lψn +

[

−|ψn|2 − νẆn(t;ω) − 2λIm
(

ψnLψn

)]

ψn. (5)

The resemblance of the coupling term to a discrete second derivative suggests
a continuum limit: the Phase Damped Stochastic Nonlinear Schrödinger equation

(PDSNLS)

i
∂ψ

∂t
= −ψxx +

[

−|ψ|2 − νẆ + λ
∂(|ψ|2)
∂t

]

ψ,

= −ψxx +
[

−|ψ|2 − νẆ − 2λIm
(

ψψxx

)]

ψ. (6)

Without the phase damping term, this is the much studied 1D Stochastic Nonlinear
Schrödinger equation (SNLS). This continuum limit can be useful for comparison
to familiar properties of the NLS equation and for describing initial data. However,
many interesting phenomena in the PDSDNLS model are at the scale of single nodes
and lead to spatial non-smoothness which invalidates such a PDE model.

2.1. Conserved quantities and energies of PDSDNLS. The exciton energy

E =
∑

n

|ψn|2 is always conserved. The DNLS (no noise or damping) also conserves



320 BRENTON LEMESURIER

its hamiltonian or total energy

H0 = −
∑

n,m

Jnmψnψm − 1

2

∑

n

|ψn|4 = −
∑

n

ψnLψn − 1

2

∑

n

|ψn|4.

With noise and damping, the total energy evolves under PDSDNLS as

dH0

dt
=
∑

n

{

νẆn(t;ω)
d

dt
|ψn|2 − λ

[

d

dt
|ψn|2

]2
}

. (7)

Note that the damping term does indeed cause loss of total energy. The effect of
noise is less clear, and nothing is proven for the discrete system, but for the SNLS
with spatially correlated noise, it is known that the ensemble average of the energy
grows linearly in time ([9, 11, 12]), and this is confirmed by the numerical results
of [13] and in Fig. 2(c) below.

2.2. Stratonovic stochastic integral form. The above equations must be inter-
preted via stochastic integral equations, and in in order to respect conservation of
the exciton energy, the Stratonovic stochastic integral must be used rather than the
more common Itô stochastic integral.

An equivalent system of ODE’s can be constructed which give the same solutions
under the Itô integral interpretation, by adding the so-called Itô correction term to
the time derivative:

dψn/dt = [as before] − (ν2/2)ψn. (8)

However, this is unpleasant as it destroys the conservative form with a fast decay
factor, needed to counter rapid exponential growth in the Itô interpretation of the
uncorrected equation, adversely affecting numerical solution.

3. Numerical methods.

3.1. A conservative linearly implicit iterative approximation of the trape-

zoid method. The fully nonlinear damping term present here prevents the use of
Fourier split-step methods popular with NLS type equations. Thus instead, an im-
plicit time discretization based on fixed point iterative solution of the trapezoid rule
is used, similar to one analysed by Chang and Xu [3]. This has several virtues:

• it satisfies the needed Stratonovic interpretation,
• it exactly conserves the exciton energy E , and
• with no noise or damping, it exactly conserves the total energy H0.

The main disadvantage is the need for iterative solution, and the fact that it is
difficult to go beyond simple fixed point iteration due to the existence of coupled
nonlinear terms, leading to the time step size restrictions typical of an explicit
method rather than the underlying implicit method. The exact conservation of
exciton energy E is preserved by using an iterative scheme with linearization of only
the effective potential V := −|ψ|2 − νẆ − 2λIm

(

ψLψ
)

as detailed below.

3.2. Trapezoid method: conservative time discretization. Writing ψj
n for

the approximations of ψn(tj), δt = tj+1 − tj, and δW j
n/δt for the approximation of
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Ẇn(t), constant on tj ≤ t ≤ tj+1, the underlying trapezoid method is

i
ψj+1

n − ψj
n

δt
+
∑

m

Jmn
ψj

m + ψj+1
n

2
+

[

|ψj
n|2 + |ψj+1

n |2
2

+ ν
δW j

n

δt

+ λIm

(

ψj
n

∑

m

Jmnψ
j
m + ψj+1

n

∑

m

Jmnψ
j+1
n

)]

× ψj
n + ψj+1

n

2
= 0 (9)

For the approximation of totally uncorrelated noise used here, the noise components
δW j

n are independent with normal distribution of standard deviation
√
δt, mean 0.

3.3. Conservative iterative approximation of the trapezoid method. The
nonlinear implicit scheme can be solved by a simple linearly implicit fixed point
iteration in which the problematic quadratic nonlinear terms in the effective poten-
tial are replaced by their most recent iterative approximations. Writing ψj,k

n for the
k-th iterate, the initial approximation used for the new time step is ψj+1,0

n = ψj
n,

and each subsequent iterate is given by solving for ψj+1,k+1
n in the simultaneous

linear equations

i
ψj+1,k+1

n − ψj
n

δt
+
∑

m

Jmn
ψj

m + ψj+1,k+1
n

2
+

[

ν
δW j

n

δt
+

|ψj
n|2 + |ψj+1,k

n |2
2

+ λIm

(

ψj
n

∑

m

Jmnψ
j
m + ψj+1,k

n

∑

m

Jmnψ
j+1,k
n

)]

× ψj
n + ψj+1,k+1

n

2
= 0 (10)

Retaining the unknown values ψj+1,k+1
n in the final term retains exact conservation

of the exciton energy at each iteration, unlike most iterative approaches to solving
Eq. (9).

3.4. Time step refinement with noise. Accuracy testing by refining time step
size has a difficulty with random noise terms: changing the time step size changes
the random numbers, so that one is looking at a different realization. To overcome
this, noise is generated on the finest anticipated time scale δtnoise, with longer
computational time step sizes δt accommodated by averaging of these noise values.
Time step refinement is then done with δt = 2pδtnoise for various p ∈ N, fixed
δtnoise.

Time step size choice is limited in practice by accuracy restrictions rather than
stability issues; both noise and self-trapping generate significant contributions from
the highest spatial frequencies and then the error term O(‖ψttt‖δt2) includes terms

O(‖L3‖δt2) = O(J3δt2), potentially requiring δt ≈
√
tolJ−3/2 for relative error tol.

For the numerical results below, δtnoise = 10−5, with the δt needed ranging from
4 × 10−5 to 16 × 10−5.

3.5. Three iterations are enough, two are not. Two iterations will give the
same second order accuracy as the trapezoid rule itself. However, a third iteration
can lower the coefficient of the error term, and greatly improves conservation of the
total energy H0 for “heatless” case, DNLS. On the other hand, experiments show
that whenever there is further significant change after the third iteration, the error
in the trapezoid method itself is excessive, and the solution is to reduce δt rather
than increase the iteration count.
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4. Numerical results. All solutions here use the same initial data, based on 1000
interval discretization of a sech pulse of width 2, initial group velocity 5 with a mesh
spacing δx = 1/10, so that J = 1/(δx)2 = 100 and the initial group velocity should
be 50 nodes per unit time (apart from boundary effects):

ψn(0) = 2 sech

(

n− 200

10
√

2

)

exp(in/4), 0 ≤ n ≤ 1000. (11)

This comes from doubling the width of a unit width soliton, allowing phenomena
in the discretized NLS such as partial self-focusing and defocusing, production of
scattering, and splitting to multiple solitons.

4.1. DNLS reference cases: cold, rigid biopolymers. The two graphs in Fig. 1
review some familiar properties of the DNLS equation, related to soliton solutions
of NLS. The initial data here has twice the width of the standard sech soliton,
leading to pulse propagation akin to that soliton, but with periodic oscillations of
the amplitude. Note that there is no splitting into two solitons (as occurs with
greater initial amplitude), and little scattering.
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Figure 1. DNLS: no noise or damping. (a) Amplitude profiles at
times t = 0, 2...10. (b) Maximum amplitude oscillations.

4.2. SDNLS: noise without damping. Adding noise alone produces fairly pre-
dictable results, with pulses somewhat lowered and broadened but maintaining mo-
mentum.

• Noise ν = 0.01 produces very little change in propagation or energy.
• Noise ν = 0.05 produces a little spatial symmetry breaking in the pulse,

which will in fact lead to separation off of a lower faster peak at later time
(Fig. 2). There is also some decay in the strength of the focusing/defocusing
oscillations, but no noticeable effect on the mean amplitude of about 3, or on
the propagation speed.

However, the total energy shows a linear accumulation of “heat energy”, as heuristi-
cally predicted from the continuum limit (Fig. 2(c)). This seems unphysical; hence
damping is needed to achieve a physically more plausible thermal equilibrium.
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Figure 2. Noise ν = 0.05. (a) Amplitude profiles t = 0, 2...10.
(b) Maximum amplitude oscillations. (c) Total energy.

4.3. PDSDNLS: seeking thermal equilibrium with noise and damping.

Using the same initial data, noise strength ν = 0.05 and realization as above, with
increasing damping strength, three main phenomena are seen (Fig’s 3-4):

• The pulse splits into a main pulse which is tall, narrow (strongly self-focused)
and slow moving, and a lower faster pulse going off the front.

• The oscillations of maximum pulse width die out with this splitting, so that
the main pulse approaches a steady state.

• The main pulse also stops moving almost completely, so become a narrow
stationary solution, similar to self-trapping.

• As damping is increased, the growth in total energy H0 ceases. Instead it be-
comes less than initially, with the coupling energy coming to rough equilibrium
somewhat higher than its initial value.

Damping λ = 0.01 already produces these effects, but after an initial steep drop
in total energy, it seems to be slowly rising, though staying well below its initial
value till final computed time t = 10 (Fig’s 3). With damping λ = 0.05, total energy
growth seems very strongly suppressed: if anything, this is “overdamped” (Fig’s 4).
With even stronger damping λ = 0.05 (not shown), the only changes are that the
pulse stops moving earlier, and the total energy grows even more slowly after its
initial drop.
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Figure 3. Noise and slight damping λ = 0.001. (a) Amplitude
profiles t = 0, 2...10. (b) Detail of main pulse at final time (c)
Maximum amplitude oscillations. (d) Total energy.

4.4. The effect of phase damping on DNLS without noise. It is perhaps
physically reasonable to consider phonon damping without noise: the situation
where phonons are driven only by coupling to excitons:

i
∂ψ

∂t
= −ψxx +

[

−|ψ|2 + λ
∂(|ψ|2)
∂t

]

ψ

It is anyway mathematically interesting, as it offers a possible explanation of the
effect of phonon damping, which can be seen as an additional self-induced nonlinear
potential which is

• repulsive where the intensity is increasing (e.g. the leading edge of a pulse),
and

• attractive where intensity is falling (the trailing edge of a pulse).

As seen in Fig’s 5,6, the absence of noise has little effect on the pulse behavior,
while total energy is now consistently decreasing, consistent with solutions converg-
ing to a minimum energy solution in the form of a stationary trapped state related
to a discretized stationary soliton.
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Figure 4. Noise and stronger damping λ = 0.01. (a) Amplitude
profiles t = 0, 2...10. (b) Detail of trapped main pulse. (c) Maxi-
mum amplitude oscillations. (d) Total energy.

5. Summary. Damping the internal vibrations of the system of Eq’s (1,2), mani-
fested as phase damping in the PDSDNLS approximation of Eq’s (3,4) can deceler-
ate and stabilize self-focused pulses, leading to a new variety of pulse self-trapping.
Damping with noise can prevent or greatly slow the growth of total energy seen
with noise alone. Sufficient damping in fact drives the total energy down, perhaps
close to the minimum value associated with soliton solutions. Damping without
noise has similar effects, and seems to drive the main pulse of the solution to a sta-
tionary state (also a steady state of the DNLS), possibly a minimizer of the DNLS
Hamiltonian subject to exciton energy constraint.

Further study is needed. Results so far use single realizations, and a number
of issues are not addressed, including proper temporal averaging (correlation) in
the noise for the case of weak damping; modeling of molecular dynamics (bend-
ing, stretching, and other motion); studying the effect of pulses of conformational
changes (like DNA strand coiling), seen in models without noise and damping; ran-
dom variation in the phonon parameters for mass, frequency etc.; and the effects of
random initial data.
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Figure 5. No noise, slight damping λ = 0.001. (a) Amplitude
profiles t = 0, 2...10. (b) Maximum amplitude oscillations (c) Total
energy.
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Figure 6. No noise, stronger damping λ = 0.01. (a) Details of
main pulse. (b) Total energy.
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