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INTRODUCTION

The CLAW hypothesis (Charlson et al. 1987) postu-
lates that changes in the Earth’s radiation budget and
any subsequent changes in oceanic conditions will be

mitigated through a feedback mechanism involving
phytoplankton, the climatically active compound di-
methylsulfide (DMS) and planetary albedo. In essence,
the CLAW hypothesis proposes that higher sea surface
temperatures (SST) will result in an enhanced DMS
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ABSTRACT: The CLAW hypothesis argues that a negative feedback mechanism involving phytoplank-
ton-derived dimethylsulfoniopropionate (DMSP) could mitigate increasing sea surface temperatures that
result from global warming. DMSP is converted to the climatically active dimethylsulfide (DMS), which
is transferred to the atmosphere and photochemically oxidized to sulfate aerosols, leading to increases
in planetary albedo and cooling of the Earth’s atmosphere. A shipboard incubation experiment was con-
ducted to investigate the effects of increased temperature and pCO2 on the algal community structure
of the North Atlantic spring bloom and their subsequent impact on particulate and dissolved DMSP con-
centrations (DMSPp and DMSPd). Under ‘greenhouse’ conditions (elevated pCO2; 690 ppm) and elevated
temperature (ambient + 4°C), coccolithophorid and pelagophyte abundances were significantly higher
than under control conditions (390 ppm CO2 and ambient temperature). This shift in phytoplankton com-
munity structure also resulted in an increase in DMSPp concentrations and DMSPp:chl a ratios. There
were also increases in DMSP-lyase activity and biomass-normalized DMSP-lyase activity under ‘green-
house’ conditions. Concentrations of DMSPd decreased in the ‘greenhouse’ treatment relative to the con-
trol. This decline is thought to be partly due to changes in the microzooplankton community structure
and decreased grazing pressure under ‘greenhouse’ conditions. The increases in DMSPp in the high tem-
perature and greenhouse treatments support the CLAW hypothesis; the declines in DMSPd do not.

KEY WORDS:  Particulate DMSP · Dissolved DMSP · Climate change · Global warming · Carbon 
dioxide · Temperature · Biogeochemistry

Resale or republication not permitted without written consent of the publisher



Mar Ecol Prog Ser 388: 41–49, 2009

flux to the atmosphere, presumably due to an in-
creased production of dimethylsulfoniopropionate
(DMSP), the precursor to DMS, by phytoplankton. Ac-
cording to the CLAW hypothesis, this DMSP increase
could occur either through an increase in phytoplank-
ton biomass or a shift in community structure towards
DMSP-producing species. It is assumed that any
increases in DMSP concentrations will lead to in-
creases in the highly volatile DMS. Enhanced vertical
mixing rates (i.e. stronger winds), or decreased micro-
bial DMS consumption, however, could also increase
sea-to-air DMS fluxes without a concomitant rise in
DMSP production (Simó & Pedrós-Alió 1999). Once in
the atmosphere, DMS would be rapidly oxidized to sul-
fur dioxide, with a subsequent increase in the forma-
tion of sulfate aerosols, which are a significant source
of cloud condensation nuclei in remote marine envi-
ronments (Ayers & Cainey 2007). Consequently, cloud
coverage and ultimately planetary albedo would
increase, thereby altering the Earth’s radiation budget
and providing a negative feedback mechanism for the
regulation of planetary climate (Vallina & Simó 2007).

Global models predict that by the end of this century
concentrations of atmospheric carbon dioxide (pCO2)
will have risen from current levels of 380 to >700 ppm
(IPCC 2007). These changes in atmospheric CO2 will
also impact the world’s oceans with anticipated in-
creases in SST of 1 to 4°C, decreases in ocean pH of 0.3
units, and major impacts on upper-ocean stratification
(Sarmiento et al. 1998, Wolf-Gladrow et al. 1999, IPCC
2007). Furthermore, such changes will have dramatic
effects on marine phytoplankton communities, in terms
of both the cellular physiology of individual species and
the taxonomic composition of the communities (Boyd &
Doney 2002, Tortell et al. 2002, Hare et al. 2007b).

Currently, there is little direct information on the
effects of climate-sensitive variables on algal commu-
nity structure and the production of DMSP or DMS.
While an earlier study was unable to find a link
between long-term climate variations and DMS levels
(Bates & Quinn 1997), more recent studies have sug-
gested that climate-driven variations in SST and mixed
layer depth may influence DMSP and DMS levels
(Simó & Pedrós-Alió 1999, Wong et al. 2006). Even
results obtained during a high-latitude mesocosm
experiment have led to differing conclusions regarding
the role of increasing pCO2 on DMSP and DMS
cycling. Wingenter et al. (2007) concluded that, al-
though absolute DMS concentrations were not differ-
ent when pCO2 levels were doubled or tripled, time-
integrated values of DMS were 26 and 18% higher,
respectively. During the same experiment, Vogt et al.
(2008) observed no differences in particulate DMSP
(DMSPp), dissolved DMSP (DMSPd), total DMSP
(DMSPt), or DMSP-lyase activity (DLA), leading them

to conclude that the system had ‘a certain resilience’ to
changing pCO2. These authors also reported that tem-
poral differences in DMS levels were observed, but
concluded that they were not statistically significant.

The overarching objective of the North Atlantic
spring bloom (NASB) expedition in 2005 was to inves-
tigate the impact of predicted increases in SST and
pCO2 on the algal community structure and biogeo-
chemistry of the NASB, one of the most predictable
and geographically extensive oceanic phytoplankton
blooms (Sverdrup 1953, Lewis 1989, Savidge &
Williams 2001). The area of the North Atlantic Ocean
encompassed by the NASB is known to be an impor-
tant source of DMS as result of the presence of small
prymnesiophytes, such as the coccolithophorid Emilia-
nia huxleyi (Sieracki et al. 1993, Simó et al. 2002,
Steinke et al. 2002). The presence of these calcifying
phytoplankton species also makes this region a critical
sink for anthropogenic CO2 (Sabine et al. 2004). How-
ever, despite numerous intensive studies (Ducklow &
Harris 1993, Sieracki et al. 1993, Savidge & Williams
2001), little is known about how this ecosystem will
respond to the effects of climate change. Using a ship-
board incubation system (Hutchins et al. 2003), sea-
water samples were manipulated to mimic SST and
pCO2 levels predicted for high-latitude oceanic
regimes by the year 2100 (IPCC 2007).

This article is the third in a series of 3 companion
papers that detail the findings made during the incu-
bation experiment and focuses on the changes in
DMSP concentrations and DLA that result from
changes in algal community composition. The lead
article (Feng et al. 2009, this volume) describes the
impact of increasing temperature and pCO2 on various
biogeochemical parameters and the algal community
composition, with particular emphasis on whole-com-
munity photosynthetic rates and the potential for
decreased export of particulate inorganic carbon (PIC)
relative to particulate organic carbon (POC) under
‘greenhouse’ conditions. The second article (Rose et al.
2009, this volume) describes the changes in and links
between microzooplankton grazing dynamics and the
algal community composition.

MATERIALS AND METHODS

The experiment was conducted aboard the RV
‘Seward Johnson’ between June 20 and July 4, 2005
using seawater collected at 57.58° N, 15.32° W. Addi-
tional information regarding the experimental
methodology can be found elsewhere (Feng et al.
2009). However, to give the reader an overview of the
incubation system, experimental design and manipu-
lation, a summary is also presented here. The experi-
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ment was carried out using acid-washed, temperature-
controlled, continuous-culture incubation systems
(‘Ecostats’; Hutchins et al. 2003, Hare et al. 2005) that
allow simultaneous manipulation of pCO2 and temper-
ature levels. Temperature control was achieved by
the use of a thermostatically controlled heat-exchange
cooling system coupled to in-line electric heaters.

A trace-metal-clean (TMC) towed-intake pumping
system (Bruland et al. 2005) was used to collect surface
seawater (~5 to 10 m) containing the intact bloom com-
munity, which was passed through an acid-washed
200 µm Nitex mesh (to remove mesozooplankton graz-
ers) and collected in an acid-cleaned 50 l mixing car-
boy. The incubation water was then dispensed into
TMC clear polycarbonate bottles (2.7 l) for incubation.
At the same location, TMC surface seawater was fil-
tered through 0.2 µm in-line filters and transferred to
acid-cleaned 50 l carboys for use as dilution media dur-
ing the continuous-dilution phase of the experiment.
The use of TMC techniques for water collection was
considered essential, as changes in ambient iron con-
centrations resulting from inadvertent contamination
in the bulk seawater collected for the experiment, in
any of the carboys used to store the seawater or in any
of the incubation bottles could have significantly
altered the phytoplankton community composition and
intracellular DMSP concentrations and introduced ran-
dom errors into the analyses (Sunda et al. 2002,
Hutchins et al. 2003, Hare et al. 2007a). As a result of
low in situ nutrient concentrations, nitrate and phos-
phate were added to both the initial incubation bottles
and dilution media to give final concentrations of 5 and
0.31 µmol l–1, respectively. These additions yielded
final Si:N and Si:P ratios of 0.13 and 0.08, respectively,
reflecting the silicate limitation typical of late bloom
conditions during the NASB (Feng et al. 2009).

The incubation bottles were then subjected to 4 dif-
ferent treatments, with 6 replicates per treatment, as
follows: (1) 12°C and 390 ppm CO2 (referred to as
‘ambient’); (2) 12°C and 690 ppm CO2 (‘high CO2’),
(3) 16°C and 390 ppm CO2 (‘high temperature’), and
(4) 16°C and 690 ppm CO2 (‘greenhouse’). The 2 pCO2

levels were achieved by gently pumping HEPA-
filtered gas streams of either ambient air (with
390 ppm CO2) or a commercially prepared air/CO2

mixture containing 690 ppm CO2. The light intensity
within the ecostats was set to 30% of the surface irra-
diance using spectrally corrected blue plastic and neu-
tral-density shade screen (Hutchins et al. 2003). This
value corresponded to the light intensity measured at
the depth where the incubation water was collected
and was selected so that the light level experienced by
phytoplankton in the ecostats would mimic the aver-
age light intensity experienced by cells in the 40 to
50 m mixed layer.

The initial (starting) bloom community was grown in
batch culture mode (i.e. no dilution) with the amended
nutrients to avoid any lag-phase growth induced by
sampling and to allow the biomass to increase to pre-
vent immediate wash-out of the bloom community
upon dilution. On Day 4 of the experiment, the system
was switched to continuous culture mode at a dilution
rate of 0.5 d–1, which corresponds to the ‘typical’
whole-community growth rate for the area (Gaul et al.
1999). The continuous culture phase of the experiment
was carried out for an additional 11 d.

During the experiment, total phytoplankton biomass
(measured as chlorophyll a [chl a]) and carbonate sys-
tem parameters (dissolved inorganic carbon [DIC] and
pH) were monitored on a daily basis using samples col-
lected directly from the incubation bottles using a gas-
tight syringe. On a less frequent basis, samples were
collected directly from the incubation bottles for cell
counts (by microscopy and flow cytometry), DMSPt,
and DMSPd. Samples for DLA, and algal pigment com-
position, POC, and particulate organic nitrogen (PON)
were collected from the outflow. Full details of the ana-
lytical protocols used for chl a, DIC, pH, cell counts,
PON, and POC are presented in the companion papers
(Feng et al. 2009, Rose et al. 2009).

Samples for DMSP were collected and preserved
using the methodology of Kiene & Slezak (2006). Small
volumes of unfiltered seawater (≤20 ml) were pre-
served with 50% sulfuric acid (100 µl per 10 ml of sam-
ple) for the determination of DMSPt. A second small
volume of each sample (≤20 ml) was gravity filtered
(Whatman GF/F), and the filtrate was preserved with
50% sulfuric acid for the determination of DMSPd. All
DMSP samples were base-hydrolyzed and measured
using a cryogenic purge and trap system coupled to a
Hewlett-Packard 5890 Series II gas chromatograph fit-
ted with flame photometric detector (DiTullio & Smith
1995). DMSPp was calculated as the difference be-
tween DMSPt and DMSPd. A recent study (Kiene et al.
2007) has noted that DMSPt can be underestimated
when colonial Phaeocystis sp. is present in samples
preserved using the Kiene & Slezak (2006) method.
Since colonial Phaeocystis was not observed in the
samples collected during the present study, the results
presented here are unlikely to have been significantly
affected by this problem.

DLA measurements were carried out following the
protocol of Steinke et al. (2000). Optimal conditions for
the lyase assay (25°C, pH 7, 500 mmol l–1 sodium chlo-
ride) were determined using a strain of Emiliania hux-
leyi (CCMP 373) that is known to possess the DMSP-
lyase (Steinke et al. 1998).

Statistical analysis was conducted with the statisti-
cal software program R (www.r-project.org). A modi-
fied ANOVA test based on a percentile bootstrap
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method (Wilcox 2003) was used to determine the sig-
nificance of any observed differences among treat-
ments on individual sampling days. Further details of
the statistical analysis are described in Rose et al.
(2009).

RESULTS

Phytoplankton pigment analyses indicated that com-
munity structure changed significantly during the
course of the experiment (Fig. 1). During the first 6 d of
the experiment, the abundances of pelagophytes, as
indicated by the concentrations of the pigment 19’-
butanoyloxyfucoxanthin (19’-But; Fig. 1A), remained
unchanged, while the abundances of haptophytes
(presumably coccolithophorids based on microscopic
analyses) appeared to decline, as indicated by the con-
centration of 19’-hexanoyloxyfucoxanthin (19’-Hex;
Fig. 1B). At the same time, the abundances of diatoms,
as indicated by the concentrations of fucoxanthin
(Fuco; Fig. 1C), increased substantially in all treat-
ments, with the smallest increases observed under
greenhouse and high temperature conditions. On
Day 6, the differences in Fuco concentrations observed
between the control versus high temperature and
control versus greenhouse were statistically significant
(p < 0.05; Table 1).

In the second half of the experiment, a dramatic
shift in community structure was observed. Diatom
abundances declined in all treatments, while in-
creases were seen in the relative abundances of
pelagophytes and coccolithophorids under both high
temperature and greenhouse conditions. On Day 14,
levels of Fuco in the greenhouse treatment were sig-
nificantly higher than in the high CO2 treatment, but
not higher than in the ambient control (Table 1,
Fig. 1C). 19’-But concentrations in the greenhouse
and high temperature treatments were significantly
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Fig. 1. Average values of (A) 19’-butanoyloxyfucoxanthin
(19’-But), (B) 19’-hexanoyloxyfucoxanthin (19’-Hex) and
(C) fucoxanthin (Fuco) during the course of the experiment.
Error bars represent the 90% confidence interval. See 

‘Materials and methods’ for treatment details

Ambient vs. High CO2 vs. High temp vs.
High CO2 High temp. Greenhouse High temp. Greenhouse Greenhouse

19’-butanoyloxyfucoxanthin
Day 6 NS NS NS NS NS NS
Day 14 NS * * NS * NS

19’-hexanoyloxyfucoxanthin
Day 6 NS NS NS NS NS NS
Day 14 NS NS NS NS NS NS

Fucoxanthin
Day 6 NS * * NS NS NS
Day 14 NS NS NS NS * NS

Table 1. Summary of the statistical analysis for 19’-butanoyloxyfucoxanthin, 19’-hexanoyloxyfucoxanthin and Fucoxanthin on
Days 6 and 14 of the 14 d experiment. *p < 0.05 between the treatments; NS: no significant difference between the treatments. 

See ‘Materials and methods’ for treatment details
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greater than those observed under ambient condi-
tions. Similarly, 19’-But was significantly higher in
the greenhouse treatment than in the high CO2 treat-
ment (Table 1, Fig. 1A). In the case of 19’-Hex, no
significant differences were observed at the end of
the experiment despite large increases in the 19’-Hex
concentrations in the greenhouse treatment (Table 1,
Fig. 1B).

Since it is unclear how environmental factors affect
the specific pigment:chl a ratio in different phyto-
plankton groups, the relative contribution of pelago-
phytes, diatoms, and coccolithophorids to the total
algal biomass was estimated by normalizing their
diagnostic pigments to the sum of all fucoxanthin
derivatives (ΣFuco), respectively (Table 2). Based on
pigment analyses, algal chl a was dominated initially
by coccolithophorids (53%), with contributions from
diatoms (18%), dinoflagellates (15%), and pelago-
phytes (14%). However, by Day 14, dramatic differ-
ences in the community structure were evident that
were apparently driven by experimental conditions in
each treatment. A significant increase (55%) in the
percentage of pelagophytes was observed in the 2 high
temperature treatments relative to the 2 low tempera-
ture treatments. In contrast, the percentage of diatoms
decreased by 27% in the high temperature treatments
compared to the lower temperature treatments.
Although the highest accessory pigment concentration
(19’-Hex) for all treatments was observed for the
coccolithophorid population, no significant change
was observed in the relative percentage of coccol-
ithophorid to the total algal community. It is worth not-
ing that, while dinoflagellates made a small contribu-
tion to the initial phytoplankton community, there was
a marked decline in dinoflagellate abundances, based
on peridinin levels, in all treatments during the exper-
iment (data not shown).

During the early stages of the experiment, concen-
trations of DMSPd, DMSPp, and DMSPp:chl a all de-
clined (Fig. 2), most likely in response to the decline in
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Treatment: Initial Ambient High temp. High CO2 Greenhouse

Pigment ratios
But:ΣFucos 0.180 ± 0.003 (n = 3) 0.17 ± 0.05 (n = 6) 0.28 ± 0.13 (n = 6) 0.19 ± 0.07 (n = 6) 0.32 ± 0.13 (n = 6)
Fuco:ΣFucos 0.139 ± 0.001 (n = 3) 0.31 ± 0.01 (n = 6) 0.30 ± 0.11 (n = 6) 0.40 ± 0.11 (n = 6) 0.25 ± 0.04 (n = 6)
Hex:ΣFucos 0.680 ± 0.003 (n = 3) 0.52 ± 0.13 (n = 6) 0.43 ± 0.23 (n = 6) 0.42 ± 0.16 (n = 6) 0.43 ± 0.16 (n = 6)

Sulfur ratios (nmol ng–1)
DMSPt:Hex + But 0.29 ± 0.03 (n = 3) 0.31 ± 0.05 (n = 6) 0.25 ± 0.04 (n = 6) 0.27 ± 0.06 (n = 5) 0.24 ± 0.08 (n = 6)
DMSPp:Hex + But 0.25 ± 0.03 (n = 3) 0.20 ± 0.04 (n = 6) 0.23 ± 0.03 (n = 6) 0.20 ± 0.06 (n = 5) 0.23 ± 0.07 (n = 6)

Table 2. Summary of the averages (±1 SD; n = number of replicates) of the major pigments normalized to the sum of all fucoxanthin
(Fuco) derivatives and sulfur parameters (particulate and total DSMP) normalized to the sum of the pigments for the major DMSP-
producing taxa (19’-hexanoyloxyfucoxanthin [Hex] and butanoyloxyfucoxanthin [But]) as measured at the start of the experiment 

(initial) and on Day 14 (end of the experiment) in each of the treatments. See ‘Materials and methods’ for treatment details
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Fig. 2. Average values of (A) dissolved dimethylsulfoniopro-
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(C) DMSPp:chl a ratios during the course of the experiment.
Error bars represent the 90% confidence interval. See 

‘Materials and methods’ for treatment details
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coccolithophorid abundances and the increase in
diatom abundances. However, starting on Day 5, small
increases in DMSPp and DMSPp:chl a were observed in
the high temperature and greenhouse treatments rela-

tive to the ambient control and high CO2 treatment. On
Day 8, DMSPp levels in the high temperature and
greenhouse treatments were significantly higher (p <
0.05; Fig. 2B, Table 3) than in the high CO2 treatment
and ambient control. By the end of the experiment,
DMSPp concentrations in the greenhouse treatment
were significantly higher (2- to 4-fold greater; p < 0.05;
Fig. 2B) than the final values measured in the other
treatments. In the case of DMSPp:chl a ratios, the
values for the high temperature and greenhouse
treatments were also significantly higher (p < 0.05) on
Days 8 and 14, and by the end of the experiment were
50 to 60% greater than under the ambient conditions
(Fig. 2C).

Conversely, DMSPd concentrations in the high tem-
perature and greenhouse treatments declined after
Day 5 relative to the controls and high CO2 treat-
ments. By the end of the experiment on Day 14,
DMSPd levels were significantly lower (p < 0.05) in
both the high temperature and greenhouse treat-
ments than under ambient conditions (Fig. 2A). The
results obtained for DLA (Fig. 3A, Table 3) show a
remarkably similar pattern to those obtained for
DMSPp, with considerably higher DLA in the green-
house treatment. At the end of the experiment, DLA
rates were ca. 2.5-fold greater in the greenhouse
treatment relative to the ambient treatment (p < 0.05;
Table 3). DLA rates were also significantly different
between the high CO2 and greenhouse treatments.
Although the DLA:chl a ratios (Fig. 3B, Table 3)
tended to follow the same pattern as DLA, the differ-
ences between the greenhouse conditions and the
other treatment conditions were not as marked and
none were significant.
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Ambient vs. High CO2 vs. High temp. vs.
High CO2 High temp. Greenhouse High temp. Greenhouse Greenhouse

DMSPd

Day 8 NS NS NS NS NS NS
Day 14 NS * * NS NS NS

DMSPp

Day 8 NS * * * * *
Day 14 NS * * NS * *

DMSPp:chl a
Day 8 NS * * * * NS
Day 14 NS NS * NS * NS

DLA
Day 13 NS NS * NS * NS

DLA:chl a
Day 13 NS NS NS NS NS NS

Table 3. Summary of the statistical analysis for DMSPd (dissolved), DMSPp (particulate), and DMSPp:chl a on Days 8 and 14, and
DMSP-lyase activity (DLA) and DLA:chl a on Day 13 of the 14 d experiment. *p < 0.05 between treatments; NS: no significant 

difference between treatments. See ‘Materials and methods’ for treatment details
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DISCUSSION

The results obtained for DMSPp during the experi-
ment were consistent with the expected changes pre-
dicted by the CLAW hypothesis. There was both an
increase in overall DMSPp concentrations and a shift in
phytoplankton community structure toward species
with a higher cellular DMSP content under green-
house conditions. Furthermore, the pigment-normalized
DMSP numbers did not vary greatly between treat-
ments, suggesting that the intracellular DMSP content
of the component of the phytoplankton community
responsible for DMSP production (the coccolitho-
phorids and pelagophytes) was not affected by the
changing conditions and confirms that the observed
changes in DMSPp and biomass-normalized DMSPp

resulted from increases in coccolithophorid and pelago-
phyte abundances.

Moreover, the results show that changes in DMSPp

(Fig. 2B to D) and in DLA (Fig. 3A,B) were driven pri-
marily by changes in temperature, with increasing
pCO2 (alone) having no effect at ambient temperature.
Although DMSPp and DLA levels were higher under
greenhouse conditions than under elevated tempera-
ture alone by the end of the experiment, none of the
observed interactive changes were statistically signifi-
cant. This observation is perhaps not surprising given
that increasing pCO2 does not increase intracellular
DMSP (it only rises under CO2 limitation; Sunda et al.
2002), but can influence DMSPp levels by influencing
the taxonomic composition of the phytoplankton com-
munities (Tortell et al. 2002, Hare et al. 2007b). Despite
a number of methodological differences between the
present study and that of Vogt et al. (2008), the finding
that increasing pCO2 alone had little effect on DMSPp

and DLA levels is remarkably consistent.
Intriguingly, the results also revealed that, under

greenhouse conditions, there was a decrease in
DMSPd concentrations, which contradicts the CLAW
hypothesis. This decline in DMSPd was likely associ-
ated with significant changes in microzooplankton
grazing pressure, species composition, and species
abundance at the end of the experiment (Rose et al.
2009). These changes in the microzooplankton com-
munity may themselves be a result of the observed
changes in the phytoplankton community, DMSPp, and
DLA. It is also worth noting that the same grazing/
DMSPp/DLA/DMSPd trends were observed in the high
temperature treatment, which was dominated ulti-
mately by pelagophytes.

Microzooplankton grazers have been shown to pref-
erentially avoid prey with high DLA. The mixing of
intracellular DMSP and the DMSP-lyase enzyme dur-
ing prey ingestion results in the formation of DMS and
acrylate, with the latter thought to render the prey

unpalatable to the predator (Wolfe & Steinke 1996,
Wolfe et al. 1997), or the presence of the former acting
as a ‘don’t eat me’ signal to deter grazing (Strom et al.
2003). A study has suggested that this mechanism may
have been partially responsible for the development
and persistence of large, anomalous coccolithophorid
blooms in the Bering Sea (Olson & Strom 2002). In the
current study, heavy grazing pressure in the green-
house treatment by the initial microzooplankton com-
munity may have allowed the coccolithophores and
pelagophytes to become the dominant taxa. As the
phytoplankton community became less and less palat-
able for the grazers, less grazing took place, resulting
in a decrease in the amount of DMSP released through
feeding, which was reflected in the decrease in DMSPd

levels.
Another potential factor that could influence DMSP

release and degradation is viral infection and lysis
(Malin et al. 1992). However, results obtained during
subsequent studies have not provided clear-cut evi-
dence of this possibility. In experiments using field
samples, the results have been ambiguous as to the
effect of viruses on DMSP or have shown no correla-
tion between viruses and concentrations of DMSP and
DMS (Bratbak et al. 1995, Wilson et al. 1998, 2002).
Conversely, various studies using cultures have found
that viruses can have a significant impact on the
release of intracellular DMSP and can suppress the for-
mation of DMS through the cleavage of DMSP by
DMSP-lyase (Hill et al. 1998, Evans et al. 2007). In the
present study, viruses were unlikely to have been a
significant factor for 2 reasons. First, in situ water col-
umn samples collected during the cruise in the NASB
region showed no discernable pattern of viral produc-
tion (Rowe et al. 2008), and samples from the ecostat
experiment showed no relationship between the treat-
ments and viral production (Rowe & Wilhelm unpubl.
data). Second, DMSPd was lower in all treatments at
the end of the experiment rather than higher, as would
be expected if viral infection resulted in cell lysis.

Unfortunately, the ecostat design precludes the
accurate measurement of DMS, as active bubbling of
the incubation bottles with the gas mixtures stripped
the DMS from the growth media. Consequently, it is
not known if the declines in DMSPd resulted from a
decrease in the release of DMSPp or an increase in
microbial consumption of DMSPd (or a combination of
both). Thus, whether or not changes in the phytoplank-
ton, microbial, or microzooplankton communities re-
sulted in changes in DMS concentrations would be
conjecture. A decline in microzooplankton abun-
dances and grazing rates could result in a decline in
the production of DMS. This scenario would be con-
trary to previous findings that suggest oceanic DMS
will increase as a result of global warming, either
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through stratification and temperature effects (Simó &
Pedrós-Alió 1999, Wong et al. 2006) or increasing
pCO2 (Wingenter et al. 2007, Vogt et al. 2008).

Whilst the findings of this experiment are consistent
with the CLAW hypothesis in that oceanic changes
associated with global warming will likely result in
increased levels of DMSPp, the findings do not fully
support the notion that this change in DMSPp will also
result in an increase in DMS levels that would lead to
an increase in cloud albedo and a negative feedback
mechanism on global warming. Furthermore, a num-
ber of uncertainties also remain. The responses ob-
served during the relatively short duration of the
experiment may be the result of acclimation to the
experimental conditions rather than an adaptive
response to 100 yr of global warming. For example, al-
though grazing pressure was suppressed under green-
house conditions during the experiment, will an
oceanic microzooplankton community develop that is
fully capable of consuming the relatively unpalatable
coccolithophorids? Conversely, if no such grazing com-
munity develops, will the DMSP content of the cells
still be released in the surface waters due to cell lysis
when the bloom becomes senescent? A reduction in
POC export due to global warming (Laws et al. 2000,
Bopp et al. 2001) could result in the retention of DMSP
near the surface, where it can be converted to DMS
and is available for transfer to the atmosphere. Finally,
how will bacterial utilization of DMSP, either through
uptake or degradation to DMS and other products, be
influenced by increasing temperature and changes in
other climate-sensitive variables?

The results of the present study along with those of its
companion studies (Feng et al. 2009, Rose et al. 2009)
highlight the complex manner in which marine ecosys-
tems may respond to global warming. Physiological (bot-
tom-up) responses to changes in pCO2 and temperature
by the phytoplankton community (Feng et al. 2009) led
indirectly to changes in the top-down pressure exerted
by microzooplankton grazers (Rose et al. 2009). The im-
pact of increasing pCO2 and temperature on DMSP ob-
served during this experiment is the net response of
those changes and shows that further work examining
these complex interactions is required.
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